Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Series »

Méthode pandas.Series.sort_values

Signature de la méthode sort_values

def sort_values(self, axis=0, ascending: Union[bool, int, Sequence[Union[bool, int]]] = True, inplace: bool = False, kind: str = 'quicksort', na_position: str = 'last', ignore_index: bool = False, key: Optional[Callable[[ForwardRef('Series')], Union[ForwardRef('Series'), ~AnyArrayLike]]] = None) 

Description

sort_values.__doc__

        Sort by the values.

        Sort a Series in ascending or descending order by some
        criterion.

        Parameters
        ----------
        axis : {0 or 'index'}, default 0
            Axis to direct sorting. The value 'index' is accepted for
            compatibility with DataFrame.sort_values.
        ascending : bool or list of bools, default True
            If True, sort values in ascending order, otherwise descending.
        inplace : bool, default False
            If True, perform operation in-place.
        kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort'
            Choice of sorting algorithm. See also :func:`numpy.sort` for more
            information. 'mergesort' is the only stable  algorithm.
        na_position : {'first' or 'last'}, default 'last'
            Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at
            the end.
        ignore_index : bool, default False
            If True, the resulting axis will be labeled 0, 1, ..., n - 1.

            .. versionadded:: 1.0.0

        key : callable, optional
            If not None, apply the key function to the series values
            before sorting. This is similar to the `key` argument in the
            builtin :meth:`sorted` function, with the notable difference that
            this `key` function should be *vectorized*. It should expect a
            ``Series`` and return an array-like.

            .. versionadded:: 1.1.0

        Returns
        -------
        Series or None
            Series ordered by values or None if ``inplace=True``.

        See Also
        --------
        Series.sort_index : Sort by the Series indices.
        DataFrame.sort_values : Sort DataFrame by the values along either axis.
        DataFrame.sort_index : Sort DataFrame by indices.

        Examples
        --------
        >>> s = pd.Series([np.nan, 1, 3, 10, 5])
        >>> s
        0     NaN
        1     1.0
        2     3.0
        3     10.0
        4     5.0
        dtype: float64

        Sort values ascending order (default behaviour)

        >>> s.sort_values(ascending=True)
        1     1.0
        2     3.0
        4     5.0
        3    10.0
        0     NaN
        dtype: float64

        Sort values descending order

        >>> s.sort_values(ascending=False)
        3    10.0
        4     5.0
        2     3.0
        1     1.0
        0     NaN
        dtype: float64

        Sort values inplace

        >>> s.sort_values(ascending=False, inplace=True)
        >>> s
        3    10.0
        4     5.0
        2     3.0
        1     1.0
        0     NaN
        dtype: float64

        Sort values putting NAs first

        >>> s.sort_values(na_position='first')
        0     NaN
        1     1.0
        2     3.0
        4     5.0
        3    10.0
        dtype: float64

        Sort a series of strings

        >>> s = pd.Series(['z', 'b', 'd', 'a', 'c'])
        >>> s
        0    z
        1    b
        2    d
        3    a
        4    c
        dtype: object

        >>> s.sort_values()
        3    a
        1    b
        4    c
        2    d
        0    z
        dtype: object

        Sort using a key function. Your `key` function will be
        given the ``Series`` of values and should return an array-like.

        >>> s = pd.Series(['a', 'B', 'c', 'D', 'e'])
        >>> s.sort_values()
        1    B
        3    D
        0    a
        2    c
        4    e
        dtype: object
        >>> s.sort_values(key=lambda x: x.str.lower())
        0    a
        1    B
        2    c
        3    D
        4    e
        dtype: object

        NumPy ufuncs work well here. For example, we can
        sort by the ``sin`` of the value

        >>> s = pd.Series([-4, -2, 0, 2, 4])
        >>> s.sort_values(key=np.sin)
        1   -2
        4    4
        2    0
        0   -4
        3    2
        dtype: int64

        More complicated user-defined functions can be used,
        as long as they expect a Series and return an array-like

        >>> s.sort_values(key=lambda x: (np.tan(x.cumsum())))
        0   -4
        3    2
        4    4
        1   -2
        2    0
        dtype: int64