Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Classe « Series »
Signature de la méthode drop
def drop(self, labels: 'IndexLabel | None' = None, *, axis: 'Axis' = 0, index: 'IndexLabel | None' = None, columns: 'IndexLabel | None' = None, level: 'Level | None' = None, inplace: 'bool' = False, errors: 'IgnoreRaise' = 'raise') -> 'Series | None'
Description
help(Series.drop)
Return Series with specified index labels removed.
Remove elements of a Series based on specifying the index labels.
When using a multi-index, labels on different levels can be removed
by specifying the level.
Parameters
----------
labels : single label or list-like
Index labels to drop.
axis : {0 or 'index'}
Unused. Parameter needed for compatibility with DataFrame.
index : single label or list-like
Redundant for application on Series, but 'index' can be used instead
of 'labels'.
columns : single label or list-like
No change is made to the Series; use 'index' or 'labels' instead.
level : int or level name, optional
For MultiIndex, level for which the labels will be removed.
inplace : bool, default False
If True, do operation inplace and return None.
errors : {'ignore', 'raise'}, default 'raise'
If 'ignore', suppress error and only existing labels are dropped.
Returns
-------
Series or None
Series with specified index labels removed or None if ``inplace=True``.
Raises
------
KeyError
If none of the labels are found in the index.
See Also
--------
Series.reindex : Return only specified index labels of Series.
Series.dropna : Return series without null values.
Series.drop_duplicates : Return Series with duplicate values removed.
DataFrame.drop : Drop specified labels from rows or columns.
Examples
--------
>>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C'])
>>> s
A 0
B 1
C 2
dtype: int64
Drop labels B en C
>>> s.drop(labels=['B', 'C'])
A 0
dtype: int64
Drop 2nd level label in MultiIndex Series
>>> midx = pd.MultiIndex(levels=[['llama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
... index=midx)
>>> s
llama speed 45.0
weight 200.0
length 1.2
cow speed 30.0
weight 250.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
dtype: float64
>>> s.drop(labels='weight', level=1)
llama speed 45.0
length 1.2
cow speed 30.0
length 1.5
falcon speed 320.0
length 0.3
dtype: float64
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :