 
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		Mise en oeuvre d'IHM
avec Qt et PySide6
		Voir le programme détaillé	
	
	
    
            Module « sqlalchemy »
            
    
            Classe « ARRAY »
            
            Informations générales
            
            Héritage
builtins.object
    Generic
builtins.object
    Visitable
        TypeEngine
builtins.object
    TypeEngineMixin
        Concatenable
builtins.object
    TypeEngineMixin
        Indexable
builtins.object
    EventTarget
        SchemaEventTarget
            ARRAY
Définition
class ARRAY(SchemaEventTarget, Indexable, Concatenable, TypeEngine):
help(ARRAY)
Represent a SQL Array type.
.. note::  This type serves as the basis for all ARRAY operations.
   However, currently **only the PostgreSQL backend has support for SQL
   arrays in SQLAlchemy**. It is recommended to use the PostgreSQL-specific
   :class:`sqlalchemy.dialects.postgresql.ARRAY` type directly when using
   ARRAY types with PostgreSQL, as it provides additional operators
   specific to that backend.
:class:`_types.ARRAY` is part of the Core in support of various SQL
standard functions such as :class:`_functions.array_agg`
which explicitly involve
arrays; however, with the exception of the PostgreSQL backend and possibly
some third-party dialects, no other SQLAlchemy built-in dialect has support
for this type.
An :class:`_types.ARRAY` type is constructed given the "type"
of element::
    mytable = Table("mytable", metadata, Column("data", ARRAY(Integer)))
The above type represents an N-dimensional array,
meaning a supporting backend such as PostgreSQL will interpret values
with any number of dimensions automatically.   To produce an INSERT
construct that passes in a 1-dimensional array of integers::
    connection.execute(mytable.insert(), {"data": [1, 2, 3]})
The :class:`_types.ARRAY` type can be constructed given a fixed number
of dimensions::
    mytable = Table(
        "mytable", metadata, Column("data", ARRAY(Integer, dimensions=2))
    )
Sending a number of dimensions is optional, but recommended if the
datatype is to represent arrays of more than one dimension.  This number
is used:
* When emitting the type declaration itself to the database, e.g.
  ``INTEGER[][]``
* When translating Python values to database values, and vice versa, e.g.
  an ARRAY of :class:`.Unicode` objects uses this number to efficiently
  access the string values inside of array structures without resorting
  to per-row type inspection
* When used with the Python ``getitem`` accessor, the number of dimensions
  serves to define the kind of type that the ``[]`` operator should
  return, e.g. for an ARRAY of INTEGER with two dimensions::
      >>> expr = table.c.column[5]  # returns ARRAY(Integer, dimensions=1)
      >>> expr = expr[6]  # returns Integer
For 1-dimensional arrays, an :class:`_types.ARRAY` instance with no
dimension parameter will generally assume single-dimensional behaviors.
SQL expressions of type :class:`_types.ARRAY` have support for "index" and
"slice" behavior.  The ``[]`` operator produces expression
constructs which will produce the appropriate SQL, both for
SELECT statements::
    select(mytable.c.data[5], mytable.c.data[2:7])
as well as UPDATE statements when the :meth:`_expression.Update.values`
method is used::
    mytable.update().values(
        {mytable.c.data[5]: 7, mytable.c.data[2:7]: [1, 2, 3]}
    )
Indexed access is one-based by default;
for zero-based index conversion, set :paramref:`_types.ARRAY.zero_indexes`.
The :class:`_types.ARRAY` type also provides for the operators
:meth:`.types.ARRAY.Comparator.any` and
:meth:`.types.ARRAY.Comparator.all`. The PostgreSQL-specific version of
:class:`_types.ARRAY` also provides additional operators.
.. container:: topic
    **Detecting Changes in ARRAY columns when using the ORM**
    The :class:`_sqltypes.ARRAY` type, when used with the SQLAlchemy ORM,
    does not detect in-place mutations to the array. In order to detect
    these, the :mod:`sqlalchemy.ext.mutable` extension must be used, using
    the :class:`.MutableList` class::
        from sqlalchemy import ARRAY
        from sqlalchemy.ext.mutable import MutableList
        class SomeOrmClass(Base):
            # ...
            data = Column(MutableList.as_mutable(ARRAY(Integer)))
    This extension will allow "in-place" changes such to the array
    such as ``.append()`` to produce events which will be detected by the
    unit of work.  Note that changes to elements **inside** the array,
    including subarrays that are mutated in place, are **not** detected.
    Alternatively, assigning a new array value to an ORM element that
    replaces the old one will always trigger a change event.
.. seealso::
    :class:`sqlalchemy.dialects.postgresql.ARRAY`
Constructeur(s)
            
                Liste des attributs statiques
 
                
                    
| dispatch | <sqlalchemy.event.base.DDLEventsDispatch object at 0x0000020D9F843260> | 
| render_bind_cast | False | 
| render_literal_cast | False | 
| should_evaluate_none | False | 
| sort_key_function | None | 
| zero_indexes | False | 
                
             
 Attributs statiques hérités de la classe TypeEngine
hashable
            
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__, 
__ge__, 
__gt__, 
__le__, 
__lt__, 
__ne__
            
                Liste des méthodes
 
                
                    Toutes les méthodes
                    Méthodes d'instance
                    Méthodes statiques
                    Méthodes dépréciées
                
                
             
Méthodes héritées de la classe TypeEngine
__repr__, __str__, __subclasshook__, adapt, as_generic, bind_expression, bind_processor, coerce_compared_value, column_expression, compile, copy, copy_value, dialect_impl, evaluates_none, get_dbapi_type, result_processor, with_variant
Méthodes héritées de la classe Generic
__class_getitem__, 
__init_subclass__
Méthodes héritées de la classe Visitable
__class_getitem__, __init_subclass__
Méthodes héritées de la classe object
__delattr__, 
__dir__, 
__format__, 
__getattribute__, 
__getstate__, 
__hash__, 
__reduce__, 
__reduce_ex__, 
__setattr__, 
__sizeof__
                      
            
	
	
	 
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
		Voir le programme détaillé	
	
	
             
            
            
            
         
        
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :