Classe « Generator »
Signature de la méthode wald
Description
wald.__doc__
wald(mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.
As the scale approaches infinity, the distribution becomes more like a
Gaussian. Some references claim that the Wald is an inverse Gaussian
with mean equal to 1, but this is by no means universal.
The inverse Gaussian distribution was first studied in relationship to
Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
because there is an inverse relationship between the time to cover a
unit distance and distance covered in unit time.
Parameters
----------
mean : float or array_like of floats
Distribution mean, must be > 0.
scale : float or array_like of floats
Scale parameter, must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``mean`` and ``scale`` are both scalars.
Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized Wald distribution.
Notes
-----
The probability density function for the Wald distribution is
.. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
\frac{-scale(x-mean)^2}{2\cdotp mean^2x}
As noted above the inverse Gaussian distribution first arise
from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and
modeling stock returns and interest rate processes.
References
----------
.. [1] Brighton Webs Ltd., Wald Distribution,
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
.. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
Distribution: Theory : Methodology, and Applications", CRC Press,
1988.
.. [3] Wikipedia, "Inverse Gaussian distribution"
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
Examples
--------
Draw values from the distribution and plot the histogram:
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :