Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Classe « Generator »
Signature de la méthode random
def random(self, size=None, dtype=<class 'numpy.float64'>, out=None)
Description
help(Generator.random)
random(size=None, dtype=np.float64, out=None)
Return random floats in the half-open interval [0.0, 1.0).
Results are from the "continuous uniform" distribution over the
stated interval. To sample :math:`Unif[a, b), b > a` use `uniform`
or multiply the output of `random` by ``(b - a)`` and add ``a``::
(b - a) * random() + a
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
dtype : dtype, optional
Desired dtype of the result, only `float64` and `float32` are supported.
Byteorder must be native. The default value is np.float64.
out : ndarray, optional
Alternative output array in which to place the result. If size is not None,
it must have the same shape as the provided size and must match the type of
the output values.
Returns
-------
out : float or ndarray of floats
Array of random floats of shape `size` (unless ``size=None``, in which
case a single float is returned).
See Also
--------
uniform : Draw samples from the parameterized uniform distribution.
Examples
--------
>>> rng = np.random.default_rng()
>>> rng.random()
0.47108547995356098 # random
>>> type(rng.random())
<class 'float'>
>>> rng.random((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random
Three-by-two array of random numbers from [-5, 0):
>>> 5 * rng.random((3, 2)) - 5
array([[-3.99149989, -0.52338984], # random
[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :