Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
standard_exponential(size=None, dtype=np.float64, method='zig', out=None)
Draw samples from the standard exponential distribution.
`standard_exponential` is identical to the exponential distribution
with a scale parameter of 1.
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
dtype : dtype, optional
Desired dtype of the result, only `float64` and `float32` are supported.
Byteorder must be native. The default value is np.float64.
method : str, optional
Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
out : ndarray, optional
Alternative output array in which to place the result. If size is not None,
it must have the same shape as the provided size and must match the type of
the output values.
Returns
-------
out : float or ndarray
Drawn samples.
Examples
--------
Output a 3x8000 array:
>>> n = np.random.default_rng().standard_exponential((3, 8000))
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :