Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Classe « Generator »
Signature de la méthode choice
def choice(self, a, size=None, replace=True, p=None, axis=0, shuffle=True)
Description
help(Generator.choice)
choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)
Generates a random sample from a given array
Parameters
----------
a : {array_like, int}
If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated from np.arange(a).
size : {int, tuple[int]}, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
than one dimension, the `size` shape will be inserted into the
`axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
len(size)``. Default is None, in which case a single value is
returned.
replace : bool, optional
Whether the sample is with or without replacement. Default is True,
meaning that a value of ``a`` can be selected multiple times.
p : 1-D array_like, optional
The probabilities associated with each entry in a.
If not given, the sample assumes a uniform distribution over all
entries in ``a``.
axis : int, optional
The axis along which the selection is performed. The default, 0,
selects by row.
shuffle : bool, optional
Whether the sample is shuffled when sampling without replacement.
Default is True, False provides a speedup.
Returns
-------
samples : single item or ndarray
The generated random samples
Raises
------
ValueError
If a is an int and less than zero, if p is not 1-dimensional, if
a is array-like with a size 0, if p is not a vector of
probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population
size.
See Also
--------
integers, shuffle, permutation
Notes
-----
Setting user-specified probabilities through ``p`` uses a more general but less
efficient sampler than the default. The general sampler produces a different sample
than the optimized sampler even if each element of ``p`` is 1 / len(a).
``p`` must sum to 1 when cast to ``float64``. To ensure this, you may wish
to normalize using ``p = p / np.sum(p, dtype=float)``.
When passing ``a`` as an integer type and ``size`` is not specified, the return
type is a native Python ``int``.
Examples
--------
Generate a uniform random sample from np.arange(5) of size 3:
>>> rng = np.random.default_rng()
>>> rng.choice(5, 3)
array([0, 3, 4]) # random
>>> #This is equivalent to rng.integers(0,5,3)
Generate a non-uniform random sample from np.arange(5) of size 3:
>>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0]) # random
Generate a uniform random sample from np.arange(5) of size 3 without
replacement:
>>> rng.choice(5, 3, replace=False)
array([3,1,0]) # random
>>> #This is equivalent to rng.permutation(np.arange(5))[:3]
Generate a uniform random sample from a 2-D array along the first
axis (the default), without replacement:
>>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
array([[3, 4, 5], # random
[0, 1, 2]])
Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:
>>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0]) # random
Any of the above can be repeated with an arbitrary array-like
instead of just integers. For instance:
>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
dtype='<U11')
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :