Classe « Generator »
Signature de la méthode logseries
Description
logseries.__doc__
logseries(p, size=None)
Draw samples from a logarithmic series distribution.
Samples are drawn from a log series distribution with specified
shape parameter, 0 < ``p`` < 1.
Parameters
----------
p : float or array_like of floats
Shape parameter for the distribution. Must be in the range (0, 1).
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``p`` is a scalar. Otherwise,
``np.array(p).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized logarithmic series distribution.
See Also
--------
scipy.stats.logser : probability density function, distribution or
cumulative density function, etc.
Notes
-----
The probability mass function for the Log Series distribution is
.. math:: P(k) = \frac{-p^k}{k \ln(1-p)},
where p = probability.
The log series distribution is frequently used to represent species
richness and occurrence, first proposed by Fisher, Corbet, and
Williams in 1943 [2]. It may also be used to model the numbers of
occupants seen in cars [3].
References
----------
.. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional
species diversity through the log series distribution of
occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
Volume 5, Number 5, September 1999 , pp. 187-195(9).
.. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
relation between the number of species and the number of
individuals in a random sample of an animal population.
Journal of Animal Ecology, 12:42-58.
.. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
Data Sets, CRC Press, 1994.
.. [4] Wikipedia, "Logarithmic distribution",
https://en.wikipedia.org/wiki/Logarithmic_distribution
Examples
--------
Draw samples from the distribution:
>>> a = .6
>>> s = np.random.default_rng().logseries(a, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s)
# plot against distribution
>>> def logseries(k, p):
... return -p**k/(k*np.log(1-p))
>>> plt.plot(bins, logseries(bins, a) * count.max()/
... logseries(bins, a).max(), 'r')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :