Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Classe « Generator »
Signature de la méthode standard_normal
def standard_normal(self, size=None, dtype=<class 'numpy.float64'>, out=None)
Description
help(Generator.standard_normal)
standard_normal(size=None, dtype=np.float64, out=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
dtype : dtype, optional
Desired dtype of the result, only `float64` and `float32` are supported.
Byteorder must be native. The default value is np.float64.
out : ndarray, optional
Alternative output array in which to place the result. If size is not None,
it must have the same shape as the provided size and must match the type of
the output values.
Returns
-------
out : float or ndarray
A floating-point array of shape ``size`` of drawn samples, or a
single sample if ``size`` was not specified.
See Also
--------
normal :
Equivalent function with additional ``loc`` and ``scale`` arguments
for setting the mean and standard deviation.
Notes
-----
For random samples from the normal distribution with mean ``mu`` and
standard deviation ``sigma``, use one of::
mu + sigma * rng.standard_normal(size=...)
rng.normal(mu, sigma, size=...)
Examples
--------
>>> rng = np.random.default_rng()
>>> rng.standard_normal()
2.1923875335537315 # random
>>> s = rng.standard_normal(8000)
>>> s
array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
-0.38672696, -0.4685006 ]) # random
>>> s.shape
(8000,)
>>> s = rng.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)
Two-by-four array of samples from the normal distribution with
mean 3 and standard deviation 2.5:
>>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :