Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Module « numpy.linalg »
Signature de la fonction inv
def inv(a)
Description
help(numpy.linalg.inv)
Compute the inverse of a matrix.
Given a square matrix `a`, return the matrix `ainv` satisfying
``a @ ainv = ainv @ a = eye(a.shape[0])``.
Parameters
----------
a : (..., M, M) array_like
Matrix to be inverted.
Returns
-------
ainv : (..., M, M) ndarray or matrix
Inverse of the matrix `a`.
Raises
------
LinAlgError
If `a` is not square or inversion fails.
See Also
--------
scipy.linalg.inv : Similar function in SciPy.
numpy.linalg.cond : Compute the condition number of a matrix.
numpy.linalg.svd : Compute the singular value decomposition of a matrix.
Notes
-----
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
If `a` is detected to be singular, a `LinAlgError` is raised. If `a` is
ill-conditioned, a `LinAlgError` may or may not be raised, and results may
be inaccurate due to floating-point errors.
References
----------
.. [1] Wikipedia, "Condition number",
https://en.wikipedia.org/wiki/Condition_number
Examples
--------
>>> import numpy as np
>>> from numpy.linalg import inv
>>> a = np.array([[1., 2.], [3., 4.]])
>>> ainv = inv(a)
>>> np.allclose(a @ ainv, np.eye(2))
True
>>> np.allclose(ainv @ a, np.eye(2))
True
If a is a matrix object, then the return value is a matrix as well:
>>> ainv = inv(np.matrix(a))
>>> ainv
matrix([[-2. , 1. ],
[ 1.5, -0.5]])
Inverses of several matrices can be computed at once:
>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
>>> inv(a)
array([[[-2. , 1. ],
[ 1.5 , -0.5 ]],
[[-1.25, 0.75],
[ 0.75, -0.25]]])
If a matrix is close to singular, the computed inverse may not satisfy
``a @ ainv = ainv @ a = eye(a.shape[0])`` even if a `LinAlgError`
is not raised:
>>> a = np.array([[2,4,6],[2,0,2],[6,8,14]])
>>> inv(a) # No errors raised
array([[-1.12589991e+15, -5.62949953e+14, 5.62949953e+14],
[-1.12589991e+15, -5.62949953e+14, 5.62949953e+14],
[ 1.12589991e+15, 5.62949953e+14, -5.62949953e+14]])
>>> a @ inv(a)
array([[ 0. , -0.5 , 0. ], # may vary
[-0.5 , 0.625, 0.25 ],
[ 0. , 0. , 1. ]])
To detect ill-conditioned matrices, you can use `numpy.linalg.cond` to
compute its *condition number* [1]_. The larger the condition number, the
more ill-conditioned the matrix is. As a rule of thumb, if the condition
number ``cond(a) = 10**k``, then you may lose up to ``k`` digits of
accuracy on top of what would be lost to the numerical method due to loss
of precision from arithmetic methods.
>>> from numpy.linalg import cond
>>> cond(a)
np.float64(8.659885634118668e+17) # may vary
It is also possible to detect ill-conditioning by inspecting the matrix's
singular values directly. The ratio between the largest and the smallest
singular value is the condition number:
>>> from numpy.linalg import svd
>>> sigma = svd(a, compute_uv=False) # Do not compute singular vectors
>>> sigma.max()/sigma.min()
8.659885634118668e+17 # may vary
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :