Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé
Module « numpy.linalg »

Fonction eig - module numpy.linalg

Signature de la fonction eig

def eig(a) 

Description

help(numpy.linalg.eig)

Compute the eigenvalues and right eigenvectors of a square array.

Parameters
----------
a : (..., M, M) array
    Matrices for which the eigenvalues and right eigenvectors will
    be computed

Returns
-------
A namedtuple with the following attributes:

eigenvalues : (..., M) array
    The eigenvalues, each repeated according to its multiplicity.
    The eigenvalues are not necessarily ordered. The resulting
    array will be of complex type, unless the imaginary part is
    zero in which case it will be cast to a real type. When `a`
    is real the resulting eigenvalues will be real (0 imaginary
    part) or occur in conjugate pairs

eigenvectors : (..., M, M) array
    The normalized (unit "length") eigenvectors, such that the
    column ``eigenvectors[:,i]`` is the eigenvector corresponding to the
    eigenvalue ``eigenvalues[i]``.

Raises
------
LinAlgError
    If the eigenvalue computation does not converge.

See Also
--------
eigvals : eigenvalues of a non-symmetric array.
eigh : eigenvalues and eigenvectors of a real symmetric or complex
       Hermitian (conjugate symmetric) array.
eigvalsh : eigenvalues of a real symmetric or complex Hermitian
           (conjugate symmetric) array.
scipy.linalg.eig : Similar function in SciPy that also solves the
                   generalized eigenvalue problem.
scipy.linalg.schur : Best choice for unitary and other non-Hermitian
                     normal matrices.

Notes
-----
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.

This is implemented using the ``_geev`` LAPACK routines which compute
the eigenvalues and eigenvectors of general square arrays.

The number `w` is an eigenvalue of `a` if there exists a vector `v` such
that ``a @ v = w * v``. Thus, the arrays `a`, `eigenvalues`, and
`eigenvectors` satisfy the equations ``a @ eigenvectors[:,i] =
eigenvalues[i] * eigenvectors[:,i]`` for :math:`i \in \{0,...,M-1\}`.

The array `eigenvectors` may not be of maximum rank, that is, some of the
columns may be linearly dependent, although round-off error may obscure
that fact. If the eigenvalues are all different, then theoretically the
eigenvectors are linearly independent and `a` can be diagonalized by a
similarity transformation using `eigenvectors`, i.e, ``inv(eigenvectors) @
a @ eigenvectors`` is diagonal.

For non-Hermitian normal matrices the SciPy function `scipy.linalg.schur`
is preferred because the matrix `eigenvectors` is guaranteed to be
unitary, which is not the case when using `eig`. The Schur factorization
produces an upper triangular matrix rather than a diagonal matrix, but for
normal matrices only the diagonal of the upper triangular matrix is
needed, the rest is roundoff error.

Finally, it is emphasized that `eigenvectors` consists of the *right* (as
in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``y.T @ a
= z * y.T`` for some number `z` is called a *left* eigenvector of `a`,
and, in general, the left and right eigenvectors of a matrix are not
necessarily the (perhaps conjugate) transposes of each other.

References
----------
G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL,
Academic Press, Inc., 1980, Various pp.

Examples
--------
>>> import numpy as np
>>> from numpy import linalg as LA

(Almost) trivial example with real eigenvalues and eigenvectors.

>>> eigenvalues, eigenvectors = LA.eig(np.diag((1, 2, 3)))
>>> eigenvalues
array([1., 2., 3.])
>>> eigenvectors
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

Real matrix possessing complex eigenvalues and eigenvectors;
note that the eigenvalues are complex conjugates of each other.

>>> eigenvalues, eigenvectors = LA.eig(np.array([[1, -1], [1, 1]]))
>>> eigenvalues
array([1.+1.j, 1.-1.j])
>>> eigenvectors
array([[0.70710678+0.j        , 0.70710678-0.j        ],
       [0.        -0.70710678j, 0.        +0.70710678j]])

Complex-valued matrix with real eigenvalues (but complex-valued
eigenvectors); note that ``a.conj().T == a``, i.e., `a` is Hermitian.

>>> a = np.array([[1, 1j], [-1j, 1]])
>>> eigenvalues, eigenvectors = LA.eig(a)
>>> eigenvalues
array([2.+0.j, 0.+0.j])
>>> eigenvectors
array([[ 0.        +0.70710678j,  0.70710678+0.j        ], # may vary
       [ 0.70710678+0.j        , -0.        +0.70710678j]])

Be careful about round-off error!

>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. eigenvalues are 1 +/- 1e-9
>>> eigenvalues, eigenvectors = LA.eig(a)
>>> eigenvalues
array([1., 1.])
>>> eigenvectors
array([[1., 0.],
       [0., 1.]])



Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé