Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Module « numpy.linalg »
Signature de la fonction cholesky
def cholesky(a, /, *, upper=False)
Description
help(numpy.linalg.cholesky)
Cholesky decomposition.
Return the lower or upper Cholesky decomposition, ``L * L.H`` or
``U.H * U``, of the square matrix ``a``, where ``L`` is lower-triangular,
``U`` is upper-triangular, and ``.H`` is the conjugate transpose operator
(which is the ordinary transpose if ``a`` is real-valued). ``a`` must be
Hermitian (symmetric if real-valued) and positive-definite. No checking is
performed to verify whether ``a`` is Hermitian or not. In addition, only
the lower or upper-triangular and diagonal elements of ``a`` are used.
Only ``L`` or ``U`` is actually returned.
Parameters
----------
a : (..., M, M) array_like
Hermitian (symmetric if all elements are real), positive-definite
input matrix.
upper : bool
If ``True``, the result must be the upper-triangular Cholesky factor.
If ``False``, the result must be the lower-triangular Cholesky factor.
Default: ``False``.
Returns
-------
L : (..., M, M) array_like
Lower or upper-triangular Cholesky factor of `a`. Returns a matrix
object if `a` is a matrix object.
Raises
------
LinAlgError
If the decomposition fails, for example, if `a` is not
positive-definite.
See Also
--------
scipy.linalg.cholesky : Similar function in SciPy.
scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian
positive-definite matrix.
scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in
`scipy.linalg.cho_solve`.
Notes
-----
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
The Cholesky decomposition is often used as a fast way of solving
.. math:: A \mathbf{x} = \mathbf{b}
(when `A` is both Hermitian/symmetric and positive-definite).
First, we solve for :math:`\mathbf{y}` in
.. math:: L \mathbf{y} = \mathbf{b},
and then for :math:`\mathbf{x}` in
.. math:: L^{H} \mathbf{x} = \mathbf{y}.
Examples
--------
>>> import numpy as np
>>> A = np.array([[1,-2j],[2j,5]])
>>> A
array([[ 1.+0.j, -0.-2.j],
[ 0.+2.j, 5.+0.j]])
>>> L = np.linalg.cholesky(A)
>>> L
array([[1.+0.j, 0.+0.j],
[0.+2.j, 1.+0.j]])
>>> np.dot(L, L.T.conj()) # verify that L * L.H = A
array([[1.+0.j, 0.-2.j],
[0.+2.j, 5.+0.j]])
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
>>> np.linalg.cholesky(A) # an ndarray object is returned
array([[1.+0.j, 0.+0.j],
[0.+2.j, 1.+0.j]])
>>> # But a matrix object is returned if A is a matrix object
>>> np.linalg.cholesky(np.matrix(A))
matrix([[ 1.+0.j, 0.+0.j],
[ 0.+2.j, 1.+0.j]])
>>> # The upper-triangular Cholesky factor can also be obtained.
>>> np.linalg.cholesky(A, upper=True)
array([[1.-0.j, 0.-2.j],
[0.-0.j, 1.-0.j]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :