Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.stats.qmc »
Classe « Sobol »
Informations générales
Héritage
builtins.object
ABC
QMCEngine
Sobol
Définition
class Sobol(QMCEngine):
help(Sobol)
Engine for generating (scrambled) Sobol' sequences.
Sobol' sequences are low-discrepancy, quasi-random numbers. Points
can be drawn using two methods:
* `random_base2`: safely draw :math:`n=2^m` points. This method
guarantees the balance properties of the sequence.
* `random`: draw an arbitrary number of points from the
sequence. See warning below.
Parameters
----------
d : int
Dimensionality of the sequence. Max dimensionality is 21201.
scramble : bool, optional
If True, use LMS+shift scrambling. Otherwise, no scrambling is done.
Default is True.
bits : int, optional
Number of bits of the generator. Control the maximum number of points
that can be generated, which is ``2**bits``. Maximal value is 64.
It does not correspond to the return type, which is always
``np.float64`` to prevent points from repeating themselves.
Default is None, which for backward compatibility, corresponds to 30.
.. versionadded:: 1.9.0
optimization : {None, "random-cd", "lloyd"}, optional
Whether to use an optimization scheme to improve the quality after
sampling. Note that this is a post-processing step that does not
guarantee that all properties of the sample will be conserved.
Default is None.
* ``random-cd``: random permutations of coordinates to lower the
centered discrepancy. The best sample based on the centered
discrepancy is constantly updated. Centered discrepancy-based
sampling shows better space-filling robustness toward 2D and 3D
subprojections compared to using other discrepancy measures.
* ``lloyd``: Perturb samples using a modified Lloyd-Max algorithm.
The process converges to equally spaced samples.
.. versionadded:: 1.10.0
rng : `numpy.random.Generator`, optional
Pseudorandom number generator state. When `rng` is None, a new
`numpy.random.Generator` is created using entropy from the
operating system. Types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
.. versionchanged:: 1.15.0
As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
transition from use of `numpy.random.RandomState` to
`numpy.random.Generator`, this keyword was changed from `seed` to
`rng`. For an interim period, both keywords will continue to work, although
only one may be specified at a time. After the interim period, function
calls using the `seed` keyword will emit warnings. Following a
deprecation period, the `seed` keyword will be removed.
Notes
-----
Sobol' sequences [1]_ provide :math:`n=2^m` low discrepancy points in
:math:`[0,1)^{d}`. Scrambling them [3]_ makes them suitable for singular
integrands, provides a means of error estimation, and can improve their
rate of convergence. The scrambling strategy which is implemented is a
(left) linear matrix scramble (LMS) followed by a digital random shift
(LMS+shift) [2]_.
There are many versions of Sobol' sequences depending on their
'direction numbers'. This code uses direction numbers from [4]_. Hence,
the maximum number of dimension is 21201. The direction numbers have been
precomputed with search criterion 6 and can be retrieved at
https://web.maths.unsw.edu.au/~fkuo/sobol/.
.. warning::
Sobol' sequences are a quadrature rule and they lose their balance
properties if one uses a sample size that is not a power of 2, or skips
the first point, or thins the sequence [5]_.
If :math:`n=2^m` points are not enough then one should take :math:`2^M`
points for :math:`M>m`. When scrambling, the number R of independent
replicates does not have to be a power of 2.
Sobol' sequences are generated to some number :math:`B` of bits.
After :math:`2^B` points have been generated, the sequence would
repeat. Hence, an error is raised.
The number of bits can be controlled with the parameter `bits`.
References
----------
.. [1] I. M. Sobol', "The distribution of points in a cube and the accurate
evaluation of integrals." Zh. Vychisl. Mat. i Mat. Phys., 7:784-802,
1967.
.. [2] J. Matousek, "On the L2-discrepancy for anchored boxes."
J. of Complexity 14, 527-556, 1998.
.. [3] Art B. Owen, "Scrambling Sobol and Niederreiter-Xing points."
Journal of Complexity, 14(4):466-489, December 1998.
.. [4] S. Joe and F. Y. Kuo, "Constructing sobol sequences with better
two-dimensional projections." SIAM Journal on Scientific Computing,
30(5):2635-2654, 2008.
.. [5] Art B. Owen, "On dropping the first Sobol' point."
:arxiv:`2008.08051`, 2020.
Examples
--------
Generate samples from a low discrepancy sequence of Sobol'.
>>> from scipy.stats import qmc
>>> sampler = qmc.Sobol(d=2, scramble=False)
>>> sample = sampler.random_base2(m=3)
>>> sample
array([[0. , 0. ],
[0.5 , 0.5 ],
[0.75 , 0.25 ],
[0.25 , 0.75 ],
[0.375, 0.375],
[0.875, 0.875],
[0.625, 0.125],
[0.125, 0.625]])
Compute the quality of the sample using the discrepancy criterion.
>>> qmc.discrepancy(sample)
0.013882107204860938
To continue an existing design, extra points can be obtained
by calling again `random_base2`. Alternatively, you can skip some
points like:
>>> _ = sampler.reset()
>>> _ = sampler.fast_forward(4)
>>> sample_continued = sampler.random_base2(m=2)
>>> sample_continued
array([[0.375, 0.375],
[0.875, 0.875],
[0.625, 0.125],
[0.125, 0.625]])
Finally, samples can be scaled to bounds.
>>> l_bounds = [0, 2]
>>> u_bounds = [10, 5]
>>> qmc.scale(sample_continued, l_bounds, u_bounds)
array([[3.75 , 3.125],
[8.75 , 4.625],
[6.25 , 2.375],
[1.25 , 3.875]])
Constructeur(s)
Liste des attributs statiques
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe QMCEngine
__init_subclass__, __subclasshook__, integers, random
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__getstate__,
__hash__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :