Module « scipy.stats.qmc »
Classe « Halton »
Informations générales
Héritage
builtins.object
ABC
QMCEngine
Halton
Définition
class Halton(QMCEngine):
Description [extrait de Halton.__doc__]
Halton sequence.
Pseudo-random number generator that generalize the Van der Corput sequence
for multiple dimensions. The Halton sequence uses the base-two Van der
Corput sequence for the first dimension, base-three for its second and
base-:math:`n` for its n-dimension.
Parameters
----------
d : int
Dimension of the parameter space.
scramble : bool, optional
If True, use Owen scrambling. Otherwise no scrambling is done.
Default is True.
seed : {None, int, `numpy.random.Generator`}, optional
If `seed` is None the `numpy.random.Generator` singleton is used.
If `seed` is an int, a new ``Generator`` instance is used,
seeded with `seed`.
If `seed` is already a ``Generator`` instance then that instance is
used.
Notes
-----
The Halton sequence has severe striping artifacts for even modestly
large dimensions. These can be ameliorated by scrambling. Scrambling
also supports replication-based error estimates and extends
applicabiltiy to unbounded integrands.
References
----------
.. [1] Halton, "On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals", Numerische
Mathematik, 1960.
.. [2] A. B. Owen. "A randomized Halton algorithm in R",
arXiv:1706.02808, 2017.
Examples
--------
Generate samples from a low discrepancy sequence of Halton.
>>> from scipy.stats import qmc
>>> sampler = qmc.Halton(d=2, scramble=False)
>>> sample = sampler.random(n=5)
>>> sample
array([[0. , 0. ],
[0.5 , 0.33333333],
[0.25 , 0.66666667],
[0.75 , 0.11111111],
[0.125 , 0.44444444]])
Compute the quality of the sample using the discrepancy criterion.
>>> qmc.discrepancy(sample)
0.088893711419753
If some wants to continue an existing design, extra points can be obtained
by calling again `random`. Alternatively, you can skip some points like:
>>> _ = sampler.fast_forward(5)
>>> sample_continued = sampler.random(n=5)
>>> sample_continued
array([[0.3125 , 0.37037037],
[0.8125 , 0.7037037 ],
[0.1875 , 0.14814815],
[0.6875 , 0.48148148],
[0.4375 , 0.81481481]])
Finally, samples can be scaled to bounds.
>>> l_bounds = [0, 2]
>>> u_bounds = [10, 5]
>>> qmc.scale(sample_continued, l_bounds, u_bounds)
array([[3.125 , 3.11111111],
[8.125 , 4.11111111],
[1.875 , 2.44444444],
[6.875 , 3.44444444],
[4.375 , 4.44444444]])
Constructeur(s)
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe QMCEngine
__init_subclass__, __subclasshook__, fast_forward, reset
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :