Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Categorical »

Méthode pandas.Categorical.from_codes

Signature de la méthode from_codes

def from_codes(codes, categories=None, ordered=None, dtype=None) 

Description

from_codes.__doc__

        Make a Categorical type from codes and categories or dtype.

        This constructor is useful if you already have codes and
        categories/dtype and so do not need the (computation intensive)
        factorization step, which is usually done on the constructor.

        If your data does not follow this convention, please use the normal
        constructor.

        Parameters
        ----------
        codes : array-like of int
            An integer array, where each integer points to a category in
            categories or dtype.categories, or else is -1 for NaN.
        categories : index-like, optional
            The categories for the categorical. Items need to be unique.
            If the categories are not given here, then they must be provided
            in `dtype`.
        ordered : bool, optional
            Whether or not this categorical is treated as an ordered
            categorical. If not given here or in `dtype`, the resulting
            categorical will be unordered.
        dtype : CategoricalDtype or "category", optional
            If :class:`CategoricalDtype`, cannot be used together with
            `categories` or `ordered`.

            .. versionadded:: 0.24.0

               When `dtype` is provided, neither `categories` nor `ordered`
               should be provided.

        Returns
        -------
        Categorical

        Examples
        --------
        >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True)
        >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype)
        ['a', 'b', 'a', 'b']
        Categories (2, object): ['a' < 'b']