Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Classe « Axes »
Signature de la méthode hist2d
def hist2d(self, x, y, bins=10, *, range=None, density=False, weights=None, cmin=None, cmax=None, data=None, **kwargs)
Description
help(Axes.hist2d)
Make a 2D histogram plot.
Parameters
----------
x, y : array-like, shape (n, )
Input values
bins : None or int or [int, int] or array-like or [array, array]
The bin specification:
- If int, the number of bins for the two dimensions
(``nx = ny = bins``).
- If ``[int, int]``, the number of bins in each dimension
(``nx, ny = bins``).
- If array-like, the bin edges for the two dimensions
(``x_edges = y_edges = bins``).
- If ``[array, array]``, the bin edges in each dimension
(``x_edges, y_edges = bins``).
The default value is 10.
range : array-like shape(2, 2), optional
The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the bins parameters): ``[[xmin,
xmax], [ymin, ymax]]``. All values outside of this range will be
considered outliers and not tallied in the histogram.
density : bool, default: False
Normalize histogram. See the documentation for the *density*
parameter of `~.Axes.hist` for more details.
weights : array-like, shape (n, ), optional
An array of values w_i weighing each sample (x_i, y_i).
cmin, cmax : float, default: None
All bins that has count less than *cmin* or more than *cmax* will not be
displayed (set to NaN before passing to `~.Axes.pcolormesh`) and these count
values in the return value count histogram will also be set to nan upon
return.
Returns
-------
h : 2D array
The bi-dimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are
histogrammed along the second dimension.
xedges : 1D array
The bin edges along the x-axis.
yedges : 1D array
The bin edges along the y-axis.
image : `~.matplotlib.collections.QuadMesh`
Other Parameters
----------------
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
The Colormap instance or registered colormap name used to map scalar data
to colors.
norm : str or `~matplotlib.colors.Normalize`, optional
The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.
If given, this can be one of the following:
- An instance of `.Normalize` or one of its subclasses
(see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc. For a
list of available scales, call `matplotlib.scale.get_scale_names()`.
In that case, a suitable `.Normalize` subclass is dynamically generated
and instantiated.
vmin, vmax : float, optional
When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).
colorizer : `~matplotlib.colorizer.Colorizer` or None, default: None
The Colorizer object used to map color to data. If None, a Colorizer
object is created from a *norm* and *cmap*.
alpha : ``0 <= scalar <= 1`` or ``None``, optional
The alpha blending value.
data : indexable object, optional
If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` if ``s`` is a key in ``data``:
*x*, *y*, *weights*
**kwargs
Additional parameters are passed along to the
`~.Axes.pcolormesh` method and `~matplotlib.collections.QuadMesh`
constructor.
See Also
--------
hist : 1D histogram plotting
hexbin : 2D histogram with hexagonal bins
Notes
-----
- Currently ``hist2d`` calculates its own axis limits, and any limits
previously set are ignored.
- Rendering the histogram with a logarithmic color scale is
accomplished by passing a `.colors.LogNorm` instance to the *norm*
keyword argument. Likewise, power-law normalization (similar
in effect to gamma correction) can be accomplished with
`.colors.PowerNorm`.
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :