Module « scipy.cluster.vq »
Signature de la fonction kmeans2
def kmeans2(data, k, iter=10, thresh=1e-05, minit='random', missing='warn', check_finite=True, *, seed=None)
Description
kmeans2.__doc__
Classify a set of observations into k clusters using the k-means algorithm.
The algorithm attempts to minimize the Euclidean distance between
observations and centroids. Several initialization methods are
included.
Parameters
----------
data : ndarray
A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length
'M' array of 'M' 1-D observations.
k : int or ndarray
The number of clusters to form as well as the number of
centroids to generate. If `minit` initialization string is
'matrix', or if a ndarray is given instead, it is
interpreted as initial cluster to use instead.
iter : int, optional
Number of iterations of the k-means algorithm to run. Note
that this differs in meaning from the iters parameter to
the kmeans function.
thresh : float, optional
(not used yet)
minit : str, optional
Method for initialization. Available methods are 'random',
'points', '++' and 'matrix':
'random': generate k centroids from a Gaussian with mean and
variance estimated from the data.
'points': choose k observations (rows) at random from data for
the initial centroids.
'++': choose k observations accordingly to the kmeans++ method
(careful seeding)
'matrix': interpret the k parameter as a k by M (or length k
array for 1-D data) array of initial centroids.
missing : str, optional
Method to deal with empty clusters. Available methods are
'warn' and 'raise':
'warn': give a warning and continue.
'raise': raise an ClusterError and terminate the algorithm.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default: True
seed : {None, int, `numpy.random.Generator`,
`numpy.random.RandomState`}, optional
Seed for initializing the pseudo-random number generator.
If `seed` is None (or `numpy.random`), the `numpy.random.RandomState`
singleton is used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
If `seed` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
The default is None.
Returns
-------
centroid : ndarray
A 'k' by 'N' array of centroids found at the last iteration of
k-means.
label : ndarray
label[i] is the code or index of the centroid the
ith observation is closest to.
See Also
--------
kmeans
References
----------
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2007.
Examples
--------
>>> from scipy.cluster.vq import kmeans2
>>> import matplotlib.pyplot as plt
Create z, an array with shape (100, 2) containing a mixture of samples
from three multivariate normal distributions.
>>> rng = np.random.default_rng()
>>> a = rng.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45)
>>> b = rng.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30)
>>> c = rng.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25)
>>> z = np.concatenate((a, b, c))
>>> rng.shuffle(z)
Compute three clusters.
>>> centroid, label = kmeans2(z, 3, minit='points')
>>> centroid
array([[ 2.22274463, -0.61666946], # may vary
[ 0.54069047, 5.86541444],
[ 6.73846769, 4.01991898]])
How many points are in each cluster?
>>> counts = np.bincount(label)
>>> counts
array([29, 51, 20]) # may vary
Plot the clusters.
>>> w0 = z[label == 0]
>>> w1 = z[label == 1]
>>> w2 = z[label == 2]
>>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0')
>>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1')
>>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2')
>>> plt.plot(centroid[:, 0], centroid[:, 1], 'k*', label='centroids')
>>> plt.axis('equal')
>>> plt.legend(shadow=True)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :