Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.cluster.hierarchy »

Fonction maxRstat - module scipy.cluster.hierarchy

Signature de la fonction maxRstat

def maxRstat(Z, R, i) 

Description

help(scipy.cluster.hierarchy.maxRstat)

Return the maximum statistic for each non-singleton cluster and its
children.

Parameters
----------
Z : array_like
    The hierarchical clustering encoded as a matrix. See `linkage` for more
    information.
R : array_like
    The inconsistency matrix.
i : int
    The column of `R` to use as the statistic.

Returns
-------
MR : ndarray
    Calculates the maximum statistic for the i'th column of the
    inconsistency matrix `R` for each non-singleton cluster
    node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]``, where
    ``Q(j)`` the set of all node ids corresponding to nodes below
    and including ``j``.

See Also
--------
linkage : for a description of what a linkage matrix is.
inconsistent : for the creation of a inconsistency matrix.

Examples
--------
>>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat
>>> from scipy.spatial.distance import pdist

Given a data set ``X``, we can apply a clustering method to obtain a
linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can
be also used to obtain the inconsistency matrix ``R`` associated to
this clustering process:

>>> X = [[0, 0], [0, 1], [1, 0],
...      [0, 4], [0, 3], [1, 4],
...      [4, 0], [3, 0], [4, 1],
...      [4, 4], [3, 4], [4, 3]]

>>> Z = median(pdist(X))
>>> R = inconsistent(Z)
>>> R
array([[1.        , 0.        , 1.        , 0.        ],
       [1.        , 0.        , 1.        , 0.        ],
       [1.        , 0.        , 1.        , 0.        ],
       [1.        , 0.        , 1.        , 0.        ],
       [1.05901699, 0.08346263, 2.        , 0.70710678],
       [1.05901699, 0.08346263, 2.        , 0.70710678],
       [1.05901699, 0.08346263, 2.        , 0.70710678],
       [1.05901699, 0.08346263, 2.        , 0.70710678],
       [1.74535599, 1.08655358, 3.        , 1.15470054],
       [1.91202266, 1.37522872, 3.        , 1.15470054],
       [3.25      , 0.25      , 3.        , 0.        ]])

`scipy.cluster.hierarchy.maxRstat` can be used to compute
the maximum value of each column of ``R``, for each non-singleton
cluster and its children:

>>> maxRstat(Z, R, 0)
array([1.        , 1.        , 1.        , 1.        , 1.05901699,
       1.05901699, 1.05901699, 1.05901699, 1.74535599, 1.91202266,
       3.25      ])
>>> maxRstat(Z, R, 1)
array([0.        , 0.        , 0.        , 0.        , 0.08346263,
       0.08346263, 0.08346263, 0.08346263, 1.08655358, 1.37522872,
       1.37522872])
>>> maxRstat(Z, R, 3)
array([0.        , 0.        , 0.        , 0.        , 0.70710678,
       0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054,
       1.15470054])



Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé