Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.cluster.hierarchy »

Fonction leaves_list - module scipy.cluster.hierarchy

Signature de la fonction leaves_list

def leaves_list(Z) 

Description

leaves_list.__doc__

    Return a list of leaf node ids.

    The return corresponds to the observation vector index as it appears
    in the tree from left to right. Z is a linkage matrix.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix.  `Z` is
        a linkage matrix.  See `linkage` for more information.

    Returns
    -------
    leaves_list : ndarray
        The list of leaf node ids.

    See Also
    --------
    dendrogram : for information about dendrogram structure.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, dendrogram, leaves_list
    >>> from scipy.spatial.distance import pdist
    >>> from matplotlib import pyplot as plt

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))

    The linkage matrix ``Z`` represents a dendrogram, that is, a tree that
    encodes the structure of the clustering performed.
    `scipy.cluster.hierarchy.leaves_list` shows the mapping between
    indices in the ``X`` dataset and leaves in the dendrogram:

    >>> leaves_list(Z)
    array([ 2,  0,  1,  5,  3,  4,  8,  6,  7, 11,  9, 10], dtype=int32)

    >>> fig = plt.figure(figsize=(25, 10))
    >>> dn = dendrogram(Z)
    >>> plt.show()