Classe « HDFStore »
Signature de la méthode put
def put(self, key: str, value: ~FrameOrSeries, format=None, index=True, append=False, complib=None, complevel: Optional[int] = None, min_itemsize: Union[int, Dict[str, int], NoneType] = None, nan_rep=None, data_columns: Optional[List[str]] = None, encoding=None, errors: str = 'strict', track_times: bool = True, dropna: bool = False)
Description
put.__doc__
Store object in HDFStore.
Parameters
----------
key : str
value : {Series, DataFrame}
format : 'fixed(f)|table(t)', default is 'fixed'
Format to use when storing object in HDFStore. Value can be one of:
``'fixed'``
Fixed format. Fast writing/reading. Not-appendable, nor searchable.
``'table'``
Table format. Write as a PyTables Table structure which may perform
worse but allow more flexible operations like searching / selecting
subsets of the data.
append : bool, default False
This will force Table format, append the input data to the existing.
data_columns : list, default None
List of columns to create as data columns, or True to use all columns.
See `here
<https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#query-via-data-columns>`__.
encoding : str, default None
Provide an encoding for strings.
track_times : bool, default True
Parameter is propagated to 'create_table' method of 'PyTables'.
If set to False it enables to have the same h5 files (same hashes)
independent on creation time.
.. versionadded:: 1.1.0
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :