Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Classe « Axes »

Méthode matplotlib.figure.Axes.hexbin

Signature de la méthode hexbin

def hexbin(self, x, y, C=None, *, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='face', reduce_C_function=<function mean at 0x0000020DE89D1D70>, mincnt=None, marginals=False, colorizer=None, data=None, **kwargs) 

Description

help(Axes.hexbin)

Make a 2D hexagonal binning plot of points *x*, *y*.

If *C* is *None*, the value of the hexagon is determined by the number
of points in the hexagon. Otherwise, *C* specifies values at the
coordinate (x[i], y[i]). For each hexagon, these values are reduced
using *reduce_C_function*.

Parameters
----------
x, y : array-like
    The data positions. *x* and *y* must be of the same length.

C : array-like, optional
    If given, these values are accumulated in the bins. Otherwise,
    every point has a value of 1. Must be of the same length as *x*
    and *y*.

gridsize : int or (int, int), default: 100
    If a single int, the number of hexagons in the *x*-direction.
    The number of hexagons in the *y*-direction is chosen such that
    the hexagons are approximately regular.

    Alternatively, if a tuple (*nx*, *ny*), the number of hexagons
    in the *x*-direction and the *y*-direction. In the
    *y*-direction, counting is done along vertically aligned
    hexagons, not along the zig-zag chains of hexagons; see the
    following illustration.

    .. plot::

       import numpy
       import matplotlib.pyplot as plt

       np.random.seed(19680801)
       n= 300
       x = np.random.standard_normal(n)
       y = np.random.standard_normal(n)

       fig, ax = plt.subplots(figsize=(4, 4))
       h = ax.hexbin(x, y, gridsize=(5, 3))
       hx, hy = h.get_offsets().T
       ax.plot(hx[24::3], hy[24::3], 'ro-')
       ax.plot(hx[-3:], hy[-3:], 'ro-')
       ax.set_title('gridsize=(5, 3)')
       ax.axis('off')

    To get approximately regular hexagons, choose
    :math:`n_x = \sqrt{3}\,n_y`.

bins : 'log' or int or sequence, default: None
    Discretization of the hexagon values.

    - If *None*, no binning is applied; the color of each hexagon
      directly corresponds to its count value.
    - If 'log', use a logarithmic scale for the colormap.
      Internally, :math:`log_{10}(i+1)` is used to determine the
      hexagon color. This is equivalent to ``norm=LogNorm()``.
    - If an integer, divide the counts in the specified number
      of bins, and color the hexagons accordingly.
    - If a sequence of values, the values of the lower bound of
      the bins to be used.

xscale : {'linear', 'log'}, default: 'linear'
    Use a linear or log10 scale on the horizontal axis.

yscale : {'linear', 'log'}, default: 'linear'
    Use a linear or log10 scale on the vertical axis.

mincnt : int >= 0, default: *None*
    If not *None*, only display cells with at least *mincnt*
    number of points in the cell.

marginals : bool, default: *False*
    If marginals is *True*, plot the marginal density as
    colormapped rectangles along the bottom of the x-axis and
    left of the y-axis.

extent : 4-tuple of float, default: *None*
    The limits of the bins (xmin, xmax, ymin, ymax).
    The default assigns the limits based on
    *gridsize*, *x*, *y*, *xscale* and *yscale*.

    If *xscale* or *yscale* is set to 'log', the limits are
    expected to be the exponent for a power of 10. E.g. for
    x-limits of 1 and 50 in 'linear' scale and y-limits
    of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).

Returns
-------
`~matplotlib.collections.PolyCollection`
    A `.PolyCollection` defining the hexagonal bins.

    - `.PolyCollection.get_offsets` contains a Mx2 array containing
      the x, y positions of the M hexagon centers in data coordinates.
    - `.PolyCollection.get_array` contains the values of the M
      hexagons.

    If *marginals* is *True*, horizontal
    bar and vertical bar (both PolyCollections) will be attached
    to the return collection as attributes *hbar* and *vbar*.

Other Parameters
----------------
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
    The Colormap instance or registered colormap name used to map scalar data
    to colors.

norm : str or `~matplotlib.colors.Normalize`, optional
    The normalization method used to scale scalar data to the [0, 1] range
    before mapping to colors using *cmap*. By default, a linear scaling is
    used, mapping the lowest value to 0 and the highest to 1.

    If given, this can be one of the following:

    - An instance of `.Normalize` or one of its subclasses
      (see :ref:`colormapnorms`).
    - A scale name, i.e. one of "linear", "log", "symlog", "logit", etc.  For a
      list of available scales, call `matplotlib.scale.get_scale_names()`.
      In that case, a suitable `.Normalize` subclass is dynamically generated
      and instantiated.

vmin, vmax : float, optional
    When using scalar data and no explicit *norm*, *vmin* and *vmax* define
    the data range that the colormap covers. By default, the colormap covers
    the complete value range of the supplied data. It is an error to use
    *vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
    name together with *vmin*/*vmax* is acceptable).

alpha : float between 0 and 1, optional
    The alpha blending value, between 0 (transparent) and 1 (opaque).

linewidths : float, default: *None*
    If *None*, defaults to :rc:`patch.linewidth`.

edgecolors : {'face', 'none', *None*} or color, default: 'face'
    The color of the hexagon edges. Possible values are:

    - 'face': Draw the edges in the same color as the fill color.
    - 'none': No edges are drawn. This can sometimes lead to unsightly
      unpainted pixels between the hexagons.
    - *None*: Draw outlines in the default color.
    - An explicit color.

reduce_C_function : callable, default: `numpy.mean`
    The function to aggregate *C* within the bins. It is ignored if
    *C* is not given. This must have the signature::

        def reduce_C_function(C: array) -> float

    Commonly used functions are:

    - `numpy.mean`: average of the points
    - `numpy.sum`: integral of the point values
    - `numpy.amax`: value taken from the largest point

    By default will only reduce cells with at least 1 point because some
    reduction functions (such as `numpy.amax`) will error/warn with empty
    input. Changing *mincnt* will adjust the cutoff, and if set to 0 will
    pass empty input to the reduction function.

colorizer : `~matplotlib.colorizer.Colorizer` or None, default: None
    The Colorizer object used to map color to data. If None, a Colorizer
    object is created from a *norm* and *cmap*.

data : indexable object, optional
    If given, the following parameters also accept a string ``s``, which is
    interpreted as ``data[s]`` if ``s`` is a key in ``data``:

    *x*, *y*, *C*

**kwargs : `~matplotlib.collections.PolyCollection` properties
    All other keyword arguments are passed on to `.PolyCollection`:

    Properties:
    agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
    alpha: array-like or scalar or None
    animated: bool
    antialiased or aa or antialiaseds: bool or list of bools
    array: array-like or None
    capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
    clim: (vmin: float, vmax: float)
    clip_box: `~matplotlib.transforms.BboxBase` or None
    clip_on: bool
    clip_path: Patch or (Path, Transform) or None
    cmap: `.Colormap` or str or None
    color: :mpltype:`color` or list of RGBA tuples
    edgecolor or ec or edgecolors: :mpltype:`color` or list of :mpltype:`color` or 'face'
    facecolor or facecolors or fc: :mpltype:`color` or list of :mpltype:`color`
    figure: `~matplotlib.figure.Figure` or `~matplotlib.figure.SubFigure`
    gid: str
    hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
    hatch_linewidth: unknown
    in_layout: bool
    joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
    label: object
    linestyle or dashes or linestyles or ls: str or tuple or list thereof
    linewidth or linewidths or lw: float or list of floats
    mouseover: bool
    norm: `.Normalize` or str or None
    offset_transform or transOffset: `.Transform`
    offsets: (N, 2) or (2,) array-like
    path_effects: list of `.AbstractPathEffect`
    paths: list of array-like
    picker: None or bool or float or callable
    pickradius: float
    rasterized: bool
    sizes: `numpy.ndarray` or None
    sketch_params: (scale: float, length: float, randomness: float)
    snap: bool or None
    transform: `~matplotlib.transforms.Transform`
    url: str
    urls: list of str or None
    verts: list of array-like
    verts_and_codes: unknown
    visible: bool
    zorder: float

See Also
--------
hist2d : 2D histogram rectangular bins


Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé