Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé
Python 3.13.2

Contenu du module « statistics »

Liste des classes du module statistics

Nom de la classe Description
count Return a count object whose .__next__() method returns consecutive values. [extrait de count.__doc__]
Counter Dict subclass for counting hashable items. Sometimes called a bag [extrait de Counter.__doc__]
Decimal Construct a new Decimal object. 'value' can be an integer, string, tuple, [extrait de Decimal.__doc__]
defaultdict defaultdict(default_factory=None, /, [...]) --> dict with default factory [extrait de defaultdict.__doc__]
Fraction This class implements rational numbers. [extrait de Fraction.__doc__]
groupby make an iterator that returns consecutive keys and groups from the iterable [extrait de groupby.__doc__]
itemgetter Return a callable object that fetches the given item(s) from its operand. [extrait de itemgetter.__doc__]
LinearRegression LinearRegression(slope, intercept) [extrait de LinearRegression.__doc__]
NormalDist Normal distribution of a random variable [extrait de NormalDist.__doc__]
repeat repeat(object [,times]) -> create an iterator which returns the object [extrait de repeat.__doc__]

Liste des exceptions du module statistics

Nom de la classe d'exception Description
StatisticsError

Liste des fonctions du module statistics

Signature de la fonction Description
acos(x) Return the arc cosine (measured in radians) of x. [extrait de acos.__doc__]
asin(x) Return the arc sine (measured in radians) of x. [extrait de asin.__doc__]
atan(x) Return the arc tangent (measured in radians) of x. [extrait de atan.__doc__]
bisect_left(a, x, lo=0, hi=None, *, key=None) Return the index where to insert item x in list a, assuming a is sorted. [extrait de bisect_left.__doc__]
bisect_right(a, x, lo=0, hi=None, *, key=None) Return the index where to insert item x in list a, assuming a is sorted. [extrait de bisect_right.__doc__]
correlation(x, y, /, *, method='linear') Pearson's correlation coefficient [extrait de correlation.__doc__]
cos(x) Return the cosine of x (measured in radians). [extrait de cos.__doc__]
cosh(x) Return the hyperbolic cosine of x. [extrait de cosh.__doc__]
covariance(x, y) Covariance [extrait de covariance.__doc__]
erf(x) Error function at x. [extrait de erf.__doc__]
exp(x) Return e raised to the power of x. [extrait de exp.__doc__]
fabs(x) Return the absolute value of the float x. [extrait de fabs.__doc__]
fmean(data, weights=None) Convert data to floats and compute the arithmetic mean. [extrait de fmean.__doc__]
fsum(seq) Return an accurate floating-point sum of values in the iterable seq. [extrait de fsum.__doc__]
geometric_mean(data) Convert data to floats and compute the geometric mean. [extrait de geometric_mean.__doc__]
harmonic_mean(data, weights=None) Return the harmonic mean of data. [extrait de harmonic_mean.__doc__]
hypot hypot(*coordinates) -> value [extrait de hypot.__doc__]
isfinite(x) Return True if x is neither an infinity nor a NaN, and False otherwise. [extrait de isfinite.__doc__]
isinf(x) Return True if x is a positive or negative infinity, and False otherwise. [extrait de isinf.__doc__]
kde(data, h, kernel='normal', *, cumulative=False) Kernel Density Estimation: Create a continuous probability density [extrait de kde.__doc__]
kde_random(data, h, kernel='normal', *, seed=None) Return a function that makes a random selection from the estimated [extrait de kde_random.__doc__]
linear_regression(x, y, /, *, proportional=False) Slope and intercept for simple linear regression. [extrait de linear_regression.__doc__]
log log(x, [base=math.e]) [extrait de log.__doc__]
mean(data) Return the sample arithmetic mean of data. [extrait de mean.__doc__]
median(data) Return the median (middle value) of numeric data. [extrait de median.__doc__]
median_grouped(data, interval=1.0) Estimates the median for numeric data binned around the midpoints [extrait de median_grouped.__doc__]
median_high(data) Return the high median of data. [extrait de median_high.__doc__]
median_low(data) Return the low median of numeric data. [extrait de median_low.__doc__]
mode(data) Return the most common data point from discrete or nominal data. [extrait de mode.__doc__]
multimode(data) Return a list of the most frequently occurring values. [extrait de multimode.__doc__]
namedtuple(typename, field_names, *, rename=False, defaults=None, module=None) Returns a new subclass of tuple with named fields. [extrait de namedtuple.__doc__]
pstdev(data, mu=None) Return the square root of the population variance. [extrait de pstdev.__doc__]
pvariance(data, mu=None) Return the population variance of ``data``. [extrait de pvariance.__doc__]
quantiles(data, *, n=4, method='exclusive') Divide *data* into *n* continuous intervals with equal probability. [extrait de quantiles.__doc__]
reduce reduce(function, iterable[, initial], /) -> value [extrait de reduce.__doc__]
sin(x) Return the sine of x (measured in radians). [extrait de sin.__doc__]
sqrt(x) Return the square root of x. [extrait de sqrt.__doc__]
stdev(data, xbar=None) Return the square root of the sample variance. [extrait de stdev.__doc__]
sumprod(p, q) Return the sum of products of values from two iterables p and q. [extrait de sumprod.__doc__]
tan(x) Return the tangent of x (measured in radians). [extrait de tan.__doc__]
variance(data, xbar=None) Return the sample variance of data. [extrait de variance.__doc__]

Liste des variables globales du module statistics

Nom de la variable globale Valeur
pi 3.141592653589793
tau 6.283185307179586


Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé