Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.interpolate »
Signature de la fonction interpn
def interpn(points, values, xi, method='linear', bounds_error=True, fill_value=nan)
Description
help(scipy.interpolate.interpn)
Multidimensional interpolation on regular or rectilinear grids.
Strictly speaking, not all regular grids are supported - this function
works on *rectilinear* grids, that is, a rectangular grid with even or
uneven spacing.
Parameters
----------
points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, )
The points defining the regular grid in n dimensions. The points in
each dimension (i.e. every elements of the points tuple) must be
strictly ascending or descending.
values : array_like, shape (m1, ..., mn, ...)
The data on the regular grid in n dimensions. Complex data is
accepted.
.. deprecated:: 1.13.0
Complex data is deprecated with ``method="pchip"`` and will raise an
error in SciPy 1.15.0. This is because ``PchipInterpolator`` only
works with real values. If you are trying to use the real components of
the passed array, use ``np.real`` on ``values``.
xi : ndarray of shape (..., ndim)
The coordinates to sample the gridded data at
method : str, optional
The method of interpolation to perform. Supported are "linear",
"nearest", "slinear", "cubic", "quintic", "pchip", and "splinef2d".
"splinef2d" is only supported for 2-dimensional data.
bounds_error : bool, optional
If True, when interpolated values are requested outside of the
domain of the input data, a ValueError is raised.
If False, then `fill_value` is used.
fill_value : number, optional
If provided, the value to use for points outside of the
interpolation domain. If None, values outside
the domain are extrapolated. Extrapolation is not supported by method
"splinef2d".
Returns
-------
values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:]
Interpolated values at `xi`. See notes for behaviour when
``xi.ndim == 1``.
See Also
--------
NearestNDInterpolator : Nearest neighbor interpolation on unstructured
data in N dimensions
LinearNDInterpolator : Piecewise linear interpolant on unstructured data
in N dimensions
RegularGridInterpolator : interpolation on a regular or rectilinear grid
in arbitrary dimensions (`interpn` wraps this
class).
RectBivariateSpline : Bivariate spline approximation over a rectangular mesh
scipy.ndimage.map_coordinates : interpolation on grids with equal spacing
(suitable for e.g., N-D image resampling)
Notes
-----
.. versionadded:: 0.14
In the case that ``xi.ndim == 1`` a new axis is inserted into
the 0 position of the returned array, values_x, so its shape is
instead ``(1,) + values.shape[ndim:]``.
If the input data is such that input dimensions have incommensurate
units and differ by many orders of magnitude, the interpolant may have
numerical artifacts. Consider rescaling the data before interpolation.
Examples
--------
Evaluate a simple example function on the points of a regular 3-D grid:
>>> import numpy as np
>>> from scipy.interpolate import interpn
>>> def value_func_3d(x, y, z):
... return 2 * x + 3 * y - z
>>> x = np.linspace(0, 4, 5)
>>> y = np.linspace(0, 5, 6)
>>> z = np.linspace(0, 6, 7)
>>> points = (x, y, z)
>>> values = value_func_3d(*np.meshgrid(*points, indexing='ij'))
Evaluate the interpolating function at a point
>>> point = np.array([2.21, 3.12, 1.15])
>>> print(interpn(points, values, point))
[12.63]
Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :