Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé
Module « scipy.interpolate »

Classe « interp1d »

Informations générales

Héritage

builtins.object
    _Interpolator1D
        interp1d

Définition

class interp1d(_Interpolator1D):

help(interp1d)

Interpolate a 1-D function.

.. legacy:: class

    For a guide to the intended replacements for `interp1d` see
    :ref:`tutorial-interpolate_1Dsection`.

`x` and `y` are arrays of values used to approximate some function f:
``y = f(x)``. This class returns a function whose call method uses
interpolation to find the value of new points.

Parameters
----------
x : (npoints, ) array_like
    A 1-D array of real values.
y : (..., npoints, ...) array_like
    A N-D array of real values. The length of `y` along the interpolation
    axis must be equal to the length of `x`. Use the ``axis`` parameter
    to select correct axis. Unlike other interpolators, the default
    interpolation axis is the last axis of `y`.
kind : str or int, optional
    Specifies the kind of interpolation as a string or as an integer
    specifying the order of the spline interpolator to use.
    The string has to be one of 'linear', 'nearest', 'nearest-up', 'zero',
    'slinear', 'quadratic', 'cubic', 'previous', or 'next'. 'zero',
    'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of
    zeroth, first, second or third order; 'previous' and 'next' simply
    return the previous or next value of the point; 'nearest-up' and
    'nearest' differ when interpolating half-integers (e.g. 0.5, 1.5)
    in that 'nearest-up' rounds up and 'nearest' rounds down. Default
    is 'linear'.
axis : int, optional
    Axis in the ``y`` array corresponding to the x-coordinate values. Unlike
    other interpolators, defaults to ``axis=-1``.
copy : bool, optional
    If ``True``, the class makes internal copies of x and y. If ``False``,
    references to ``x`` and ``y`` are used if possible. The default is to copy.
bounds_error : bool, optional
    If True, a ValueError is raised any time interpolation is attempted on
    a value outside of the range of x (where extrapolation is
    necessary). If False, out of bounds values are assigned `fill_value`.
    By default, an error is raised unless ``fill_value="extrapolate"``.
fill_value : array-like or (array-like, array_like) or "extrapolate", optional
    - if a ndarray (or float), this value will be used to fill in for
      requested points outside of the data range. If not provided, then
      the default is NaN. The array-like must broadcast properly to the
      dimensions of the non-interpolation axes.
    - If a two-element tuple, then the first element is used as a
      fill value for ``x_new < x[0]`` and the second element is used for
      ``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g.,
      list or ndarray, regardless of shape) is taken to be a single
      array-like argument meant to be used for both bounds as
      ``below, above = fill_value, fill_value``. Using a two-element tuple
      or ndarray requires ``bounds_error=False``.

      .. versionadded:: 0.17.0
    - If "extrapolate", then points outside the data range will be
      extrapolated.

      .. versionadded:: 0.17.0
assume_sorted : bool, optional
    If False, values of `x` can be in any order and they are sorted first.
    If True, `x` has to be an array of monotonically increasing values.

Attributes
----------
fill_value

Methods
-------
__call__

See Also
--------
splrep, splev
    Spline interpolation/smoothing based on FITPACK.
UnivariateSpline : An object-oriented wrapper of the FITPACK routines.
interp2d : 2-D interpolation

Notes
-----
Calling `interp1d` with NaNs present in input values results in
undefined behaviour.

Input values `x` and `y` must be convertible to `float` values like
`int` or `float`.

If the values in `x` are not unique, the resulting behavior is
undefined and specific to the choice of `kind`, i.e., changing
`kind` will change the behavior for duplicates.


Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
>>> x = np.arange(0, 10)
>>> y = np.exp(-x/3.0)
>>> f = interpolate.interp1d(x, y)

>>> xnew = np.arange(0, 9, 0.1)
>>> ynew = f(xnew)   # use interpolation function returned by `interp1d`
>>> plt.plot(x, y, 'o', xnew, ynew, '-')
>>> plt.show()

Constructeur(s)

Signature du constructeur Description
__init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=nan, assume_sorted=False) Initialize a 1-D linear interpolation class. [extrait de __init__.__doc__]

Liste des attributs statiques

Attributs statiques hérités de la classe _Interpolator1D

dtype

Liste des propriétés

Nom de la propriétéDescription
fill_valueThe fill value. [extrait de fill_value.__doc__]

Liste des opérateurs

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription

Méthodes héritées de la classe _Interpolator1D

__call__, __init_subclass__, __subclasshook__

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __getstate__, __hash__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé