Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.interpolate »

Classe « RectSphereBivariateSpline »

Informations générales

Héritage

builtins.object
    _BivariateSplineBase
        SphereBivariateSpline
            RectSphereBivariateSpline

Définition

class RectSphereBivariateSpline(SphereBivariateSpline):

help(RectSphereBivariateSpline)

Bivariate spline approximation over a rectangular mesh on a sphere.

Can be used for smoothing data.

.. versionadded:: 0.11.0

Parameters
----------
u : array_like
    1-D array of colatitude coordinates in strictly ascending order.
    Coordinates must be given in radians and lie within the open interval
    ``(0, pi)``.
v : array_like
    1-D array of longitude coordinates in strictly ascending order.
    Coordinates must be given in radians. First element (``v[0]``) must lie
    within the interval ``[-pi, pi)``. Last element (``v[-1]``) must satisfy
    ``v[-1] <= v[0] + 2*pi``.
r : array_like
    2-D array of data with shape ``(u.size, v.size)``.
s : float, optional
    Positive smoothing factor defined for estimation condition
    (``s=0`` is for interpolation).
pole_continuity : bool or (bool, bool), optional
    Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and
    ``u=pi`` (``pole_continuity[1]``).  The order of continuity at the pole
    will be 1 or 0 when this is True or False, respectively.
    Defaults to False.
pole_values : float or (float, float), optional
    Data values at the poles ``u=0`` and ``u=pi``.  Either the whole
    parameter or each individual element can be None.  Defaults to None.
pole_exact : bool or (bool, bool), optional
    Data value exactness at the poles ``u=0`` and ``u=pi``.  If True, the
    value is considered to be the right function value, and it will be
    fitted exactly. If False, the value will be considered to be a data
    value just like the other data values.  Defaults to False.
pole_flat : bool or (bool, bool), optional
    For the poles at ``u=0`` and ``u=pi``, specify whether or not the
    approximation has vanishing derivatives.  Defaults to False.

See Also
--------
BivariateSpline :
    a base class for bivariate splines.
UnivariateSpline :
    a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline :
    a smoothing bivariate spline through the given points
LSQBivariateSpline :
    a bivariate spline using weighted least-squares fitting
SmoothSphereBivariateSpline :
    a smoothing bivariate spline in spherical coordinates
LSQSphereBivariateSpline :
    a bivariate spline in spherical coordinates using weighted
    least-squares fitting
RectBivariateSpline :
    a bivariate spline over a rectangular mesh.
bisplrep :
    a function to find a bivariate B-spline representation of a surface
bisplev :
    a function to evaluate a bivariate B-spline and its derivatives

Notes
-----
Currently, only the smoothing spline approximation (``iopt[0] = 0`` and
``iopt[0] = 1`` in the FITPACK routine) is supported.  The exact
least-squares spline approximation is not implemented yet.

When actually performing the interpolation, the requested `v` values must
lie within the same length 2pi interval that the original `v` values were
chosen from.

For more information, see the FITPACK_ site about this function.

.. _FITPACK: http://www.netlib.org/dierckx/spgrid.f

Examples
--------
Suppose we have global data on a coarse grid

>>> import numpy as np
>>> lats = np.linspace(10, 170, 9) * np.pi / 180.
>>> lons = np.linspace(0, 350, 18) * np.pi / 180.
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
...               np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T

We want to interpolate it to a global one-degree grid

>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)

We need to set up the interpolator object

>>> from scipy.interpolate import RectSphereBivariateSpline
>>> lut = RectSphereBivariateSpline(lats, lons, data)

Finally we interpolate the data.  The `RectSphereBivariateSpline` object
only takes 1-D arrays as input, therefore we need to do some reshaping.

>>> data_interp = lut.ev(new_lats.ravel(),
...                      new_lons.ravel()).reshape((360, 180)).T

Looking at the original and the interpolated data, one can see that the
interpolant reproduces the original data very well:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(212)
>>> ax2.imshow(data_interp, interpolation='nearest')
>>> plt.show()

Choosing the optimal value of ``s`` can be a delicate task. Recommended
values for ``s`` depend on the accuracy of the data values.  If the user
has an idea of the statistical errors on the data, she can also find a
proper estimate for ``s``. By assuming that, if she specifies the
right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly
reproduces the function underlying the data, she can evaluate
``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``.
For example, if she knows that the statistical errors on her
``r(i,j)``-values are not greater than 0.1, she may expect that a good
``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``.

If nothing is known about the statistical error in ``r(i,j)``, ``s`` must
be determined by trial and error.  The best is then to start with a very
large value of ``s`` (to determine the least-squares polynomial and the
corresponding upper bound ``fp0`` for ``s``) and then to progressively
decrease the value of ``s`` (say by a factor 10 in the beginning, i.e.
``s = fp0 / 10, fp0 / 100, ...``  and more carefully as the approximation
shows more detail) to obtain closer fits.

The interpolation results for different values of ``s`` give some insight
into this process:

>>> fig2 = plt.figure()
>>> s = [3e9, 2e9, 1e9, 1e8]
>>> for idx, sval in enumerate(s, 1):
...     lut = RectSphereBivariateSpline(lats, lons, data, s=sval)
...     data_interp = lut.ev(new_lats.ravel(),
...                          new_lons.ravel()).reshape((360, 180)).T
...     ax = fig2.add_subplot(2, 2, idx)
...     ax.imshow(data_interp, interpolation='nearest')
...     ax.set_title(f"s = {sval:g}")
>>> plt.show()

Constructeur(s)

Signature du constructeur Description
__init__(self, u, v, r, s=0.0, pole_continuity=False, pole_values=None, pole_exact=False, pole_flat=False)

Liste des opérateurs

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
__call__(self, theta, phi, dtheta=0, dphi=0, grid=True)

Méthodes héritées de la classe SphereBivariateSpline

__init_subclass__, __subclasshook__, ev

Méthodes héritées de la classe _BivariateSplineBase

get_coeffs, get_knots, get_residual, partial_derivative

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __getstate__, __hash__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé