Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Module « matplotlib.pyplot »
Signature de la fonction tripcolor
def tripcolor(*args, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, shading='flat', facecolors=None, **kwargs)
Description
help(matplotlib.pyplot.tripcolor)
Create a pseudocolor plot of an unstructured triangular grid.
Call signatures::
tripcolor(triangulation, c, *, ...)
tripcolor(x, y, c, *, [triangles=triangles], [mask=mask], ...)
The triangular grid can be specified either by passing a `.Triangulation`
object as the first parameter, or by passing the points *x*, *y* and
optionally the *triangles* and a *mask*. See `.Triangulation` for an
explanation of these parameters.
It is possible to pass the triangles positionally, i.e.
``tripcolor(x, y, triangles, c, ...)``. However, this is discouraged.
For more clarity, pass *triangles* via keyword argument.
If neither of *triangulation* or *triangles* are given, the triangulation
is calculated on the fly. In this case, it does not make sense to provide
colors at the triangle faces via *c* or *facecolors* because there are
multiple possible triangulations for a group of points and you don't know
which triangles will be constructed.
Parameters
----------
triangulation : `.Triangulation`
An already created triangular grid.
x, y, triangles, mask
Parameters defining the triangular grid. See `.Triangulation`.
This is mutually exclusive with specifying *triangulation*.
c : array-like
The color values, either for the points or for the triangles. Which one
is automatically inferred from the length of *c*, i.e. does it match
the number of points or the number of triangles. If there are the same
number of points and triangles in the triangulation it is assumed that
color values are defined at points; to force the use of color values at
triangles use the keyword argument ``facecolors=c`` instead of just
``c``.
This parameter is position-only.
facecolors : array-like, optional
Can be used alternatively to *c* to specify colors at the triangle
faces. This parameter takes precedence over *c*.
shading : {'flat', 'gouraud'}, default: 'flat'
If 'flat' and the color values *c* are defined at points, the color
values used for each triangle are from the mean c of the triangle's
three points. If *shading* is 'gouraud' then color values must be
defined at points.
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
The Colormap instance or registered colormap name used to map scalar data
to colors.
norm : str or `~matplotlib.colors.Normalize`, optional
The normalization method used to scale scalar data to the [0, 1] range
before mapping to colors using *cmap*. By default, a linear scaling is
used, mapping the lowest value to 0 and the highest to 1.
If given, this can be one of the following:
- An instance of `.Normalize` or one of its subclasses
(see :ref:`colormapnorms`).
- A scale name, i.e. one of "linear", "log", "symlog", "logit", etc. For a
list of available scales, call `matplotlib.scale.get_scale_names()`.
In that case, a suitable `.Normalize` subclass is dynamically generated
and instantiated.
vmin, vmax : float, optional
When using scalar data and no explicit *norm*, *vmin* and *vmax* define
the data range that the colormap covers. By default, the colormap covers
the complete value range of the supplied data. It is an error to use
*vmin*/*vmax* when a *norm* instance is given (but using a `str` *norm*
name together with *vmin*/*vmax* is acceptable).
colorizer : `~matplotlib.colorizer.Colorizer` or None, default: None
The Colorizer object used to map color to data. If None, a Colorizer
object is created from a *norm* and *cmap*.
Returns
-------
`~matplotlib.collections.PolyCollection` or `~matplotlib.collections.TriMesh`
The result depends on *shading*: For ``shading='flat'`` the result is a
`.PolyCollection`, for ``shading='gouraud'`` the result is a `.TriMesh`.
Other Parameters
----------------
**kwargs : `~matplotlib.collections.Collection` properties
Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: array-like or scalar or None
animated: bool
antialiased or aa or antialiaseds: bool or list of bools
array: array-like or None
capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
clim: (vmin: float, vmax: float)
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
cmap: `.Colormap` or str or None
color: :mpltype:`color` or list of RGBA tuples
edgecolor or ec or edgecolors: :mpltype:`color` or list of :mpltype:`color` or 'face'
facecolor or facecolors or fc: :mpltype:`color` or list of :mpltype:`color`
figure: `~matplotlib.figure.Figure` or `~matplotlib.figure.SubFigure`
gid: str
hatch: {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
hatch_linewidth: unknown
in_layout: bool
joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
label: object
linestyle or dashes or linestyles or ls: str or tuple or list thereof
linewidth or linewidths or lw: float or list of floats
mouseover: bool
norm: `.Normalize` or str or None
offset_transform or transOffset: `.Transform`
offsets: (N, 2) or (2,) array-like
path_effects: list of `.AbstractPathEffect`
paths: unknown
picker: None or bool or float or callable
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: `~matplotlib.transforms.Transform`
url: str
urls: list of str or None
visible: bool
zorder: float
Notes
-----
.. note::
This is the :ref:`pyplot wrapper <pyplot_interface>` for `.axes.Axes.tripcolor`.
Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :