Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.odr »

Classe « Model »

Informations générales

Héritage

builtins.object
    Model

Définition

class Model(builtins.object):

help(Model)

The Model class stores information about the function you wish to fit.

It stores the function itself, at the least, and optionally stores
functions which compute the Jacobians used during fitting. Also, one
can provide a function that will provide reasonable starting values
for the fit parameters possibly given the set of data.

Parameters
----------
fcn : function
      fcn(beta, x) --> y
fjacb : function
      Jacobian of fcn wrt the fit parameters beta.

      fjacb(beta, x) --> @f_i(x,B)/@B_j
fjacd : function
      Jacobian of fcn wrt the (possibly multidimensional) input
      variable.

      fjacd(beta, x) --> @f_i(x,B)/@x_j
extra_args : tuple, optional
      If specified, `extra_args` should be a tuple of extra
      arguments to pass to `fcn`, `fjacb`, and `fjacd`. Each will be called
      by `apply(fcn, (beta, x) + extra_args)`
estimate : array_like of rank-1
      Provides estimates of the fit parameters from the data

      estimate(data) --> estbeta
implicit : boolean
      If TRUE, specifies that the model
      is implicit; i.e `fcn(beta, x)` ~= 0 and there is no y data to fit
      against
meta : dict, optional
      freeform dictionary of metadata for the model

Notes
-----
Note that the `fcn`, `fjacb`, and `fjacd` operate on NumPy arrays and
return a NumPy array. The `estimate` object takes an instance of the
Data class.

Here are the rules for the shapes of the argument and return
arrays of the callback functions:

`x`
    if the input data is single-dimensional, then `x` is rank-1
    array; i.e., ``x = array([1, 2, 3, ...]); x.shape = (n,)``
    If the input data is multi-dimensional, then `x` is a rank-2 array;
    i.e., ``x = array([[1, 2, ...], [2, 4, ...]]); x.shape = (m, n)``.
    In all cases, it has the same shape as the input data array passed to
    `~scipy.odr.odr`. `m` is the dimensionality of the input data,
    `n` is the number of observations.
`y`
    if the response variable is single-dimensional, then `y` is a
    rank-1 array, i.e., ``y = array([2, 4, ...]); y.shape = (n,)``.
    If the response variable is multi-dimensional, then `y` is a rank-2
    array, i.e., ``y = array([[2, 4, ...], [3, 6, ...]]); y.shape =
    (q, n)`` where `q` is the dimensionality of the response variable.
`beta`
    rank-1 array of length `p` where `p` is the number of parameters;
    i.e. ``beta = array([B_1, B_2, ..., B_p])``
`fjacb`
    if the response variable is multi-dimensional, then the
    return array's shape is ``(q, p, n)`` such that ``fjacb(x,beta)[l,k,i] =
    d f_l(X,B)/d B_k`` evaluated at the ith data point.  If ``q == 1``, then
    the return array is only rank-2 and with shape ``(p, n)``.
`fjacd`
    as with fjacb, only the return array's shape is ``(q, m, n)``
    such that ``fjacd(x,beta)[l,j,i] = d f_l(X,B)/d X_j`` at the ith data
    point.  If ``q == 1``, then the return array's shape is ``(m, n)``. If
    ``m == 1``, the shape is (q, n). If `m == q == 1`, the shape is ``(n,)``.

Constructeur(s)

Signature du constructeur Description
__init__(self, fcn, fjacb=None, fjacd=None, extra_args=None, estimate=None, implicit=0, meta=None)

Liste des opérateurs

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
__getattr__(self, attr) Dispatch attribute access to the metadata. [extrait de __getattr__.__doc__]
set_meta(self, **kwds) Update the metadata dictionary with the keywords and data provided [extrait de set_meta.__doc__]

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __getstate__, __hash__, __init_subclass__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__, __subclasshook__

Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé