Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Classe « FortranFile »

Méthode scipy.io.FortranFile.read_record

Signature de la méthode read_record

def read_record(self, *dtypes, **kwargs) 

Description

help(FortranFile.read_record)

Reads a record of a given type from the file.

Parameters
----------
*dtypes : dtypes, optional
    Data type(s) specifying the size and endianness of the data.

Returns
-------
data : ndarray
    A 1-D array object.

Raises
------
FortranEOFError
    To signal that no further records are available
FortranFormattingError
    To signal that the end of the file was encountered
    part-way through a record

Notes
-----
If the record contains a multidimensional array, you can specify
the size in the dtype. For example::

    INTEGER var(5,4)

can be read with::

    read_record('(4,5)i4').T

Note that this function does **not** assume the file data is in Fortran
column major order, so you need to (i) swap the order of dimensions
when reading and (ii) transpose the resulting array.

Alternatively, you can read the data as a 1-D array and handle the
ordering yourself. For example::

    read_record('i4').reshape(5, 4, order='F')

For records that contain several variables or mixed types (as opposed
to single scalar or array types), give them as separate arguments::

    double precision :: a
    integer :: b
    write(1) a, b

    record = f.read_record('<f4', '<i4')
    a = record[0]  # first number
    b = record[1]  # second number

and if any of the variables are arrays, the shape can be specified as
the third item in the relevant dtype::

    double precision :: a
    integer :: b(3,4)
    write(1) a, b

    record = f.read_record('<f4', np.dtype(('<i4', (4, 3))))
    a = record[0]
    b = record[1].T

NumPy also supports a short syntax for this kind of type::

    record = f.read_record('<f4', '(3,3)<i4')

See Also
--------
read_reals
read_ints



Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé