Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « PPoly »

Méthode scipy.interpolate.PPoly.solve

Signature de la méthode solve

def solve(self, y=0.0, discontinuity=True, extrapolate=None) 

Description

solve.__doc__

        Find real solutions of the the equation ``pp(x) == y``.

        Parameters
        ----------
        y : float, optional
            Right-hand side. Default is zero.
        discontinuity : bool, optional
            Whether to report sign changes across discontinuities at
            breakpoints as roots.
        extrapolate : {bool, 'periodic', None}, optional
            If bool, determines whether to return roots from the polynomial
            extrapolated based on first and last intervals, 'periodic' works
            the same as False. If None (default), use `self.extrapolate`.

        Returns
        -------
        roots : ndarray
            Roots of the polynomial(s).

            If the PPoly object describes multiple polynomials, the
            return value is an object array whose each element is an
            ndarray containing the roots.

        Notes
        -----
        This routine works only on real-valued polynomials.

        If the piecewise polynomial contains sections that are
        identically zero, the root list will contain the start point
        of the corresponding interval, followed by a ``nan`` value.

        If the polynomial is discontinuous across a breakpoint, and
        there is a sign change across the breakpoint, this is reported
        if the `discont` parameter is True.

        Examples
        --------

        Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals
        ``[-2, 1], [1, 2]``:

        >>> from scipy.interpolate import PPoly
        >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2])
        >>> pp.solve()
        array([-1.,  1.])