Classe « ufunc »
Signature de la méthode reduceat
Description
reduceat.__doc__
reduceat(array, indices, axis=0, dtype=None, out=None)
Performs a (local) reduce with specified slices over a single axis.
For i in ``range(len(indices))``, `reduceat` computes
``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th
generalized "row" parallel to `axis` in the final result (i.e., in a
2-D array, for example, if `axis = 0`, it becomes the i-th row, but if
`axis = 1`, it becomes the i-th column). There are three exceptions to this:
* when ``i = len(indices) - 1`` (so for the last index),
``indices[i+1] = array.shape[axis]``.
* if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is
simply ``array[indices[i]]``.
* if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised.
The shape of the output depends on the size of `indices`, and may be
larger than `array` (this happens if ``len(indices) > array.shape[axis]``).
Parameters
----------
array : array_like
The array to act on.
indices : array_like
Paired indices, comma separated (not colon), specifying slices to
reduce.
axis : int, optional
The axis along which to apply the reduceat.
dtype : data-type code, optional
The type used to represent the intermediate results. Defaults
to the data type of the output array if this is provided, or
the data type of the input array if no output array is provided.
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If not provided or None,
a freshly-allocated array is returned. For consistency with
``ufunc.__call__``, if given as a keyword, this may be wrapped in a
1-element tuple.
.. versionchanged:: 1.13.0
Tuples are allowed for keyword argument.
Returns
-------
r : ndarray
The reduced values. If `out` was supplied, `r` is a reference to
`out`.
Notes
-----
A descriptive example:
If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as
``ufunc.reduceat(array, indices)[::2]`` where `indices` is
``range(len(array) - 1)`` with a zero placed
in every other element:
``indices = zeros(2 * len(array) - 1)``,
``indices[1::2] = range(1, len(array))``.
Don't be fooled by this attribute's name: `reduceat(array)` is not
necessarily smaller than `array`.
Examples
--------
To take the running sum of four successive values:
>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
array([ 6, 10, 14, 18])
A 2-D example:
>>> x = np.linspace(0, 15, 16).reshape(4,4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
::
# reduce such that the result has the following five rows:
# [row1 + row2 + row3]
# [row4]
# [row2]
# [row3]
# [row1 + row2 + row3 + row4]
>>> np.add.reduceat(x, [0, 3, 1, 2, 0])
array([[12., 15., 18., 21.],
[12., 13., 14., 15.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[24., 28., 32., 36.]])
::
# reduce such that result has the following two columns:
# [col1 * col2 * col3, col4]
>>> np.multiply.reduceat(x, [0, 3], 1)
array([[ 0., 3.],
[ 120., 7.],
[ 720., 11.],
[2184., 15.]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :