Classe « ufunc »
Signature de la méthode outer
Description
outer.__doc__
outer(A, B, /, **kwargs)
Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`.
Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of
``op.outer(A, B)`` is an array of dimension M + N such that:
.. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] =
op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])
For `A` and `B` one-dimensional, this is equivalent to::
r = empty(len(A),len(B))
for i in range(len(A)):
for j in range(len(B)):
r[i,j] = op(A[i], B[j]) # op = ufunc in question
Parameters
----------
A : array_like
First array
B : array_like
Second array
kwargs : any
Arguments to pass on to the ufunc. Typically `dtype` or `out`.
Returns
-------
r : ndarray
Output array
See Also
--------
numpy.outer : A less powerful version of ``np.multiply.outer``
that `ravel`\ s all inputs to 1D. This exists
primarily for compatibility with old code.
tensordot : ``np.tensordot(a, b, axes=((), ()))`` and
``np.multiply.outer(a, b)`` behave same for all
dimensions of a and b.
Examples
--------
>>> np.multiply.outer([1, 2, 3], [4, 5, 6])
array([[ 4, 5, 6],
[ 8, 10, 12],
[12, 15, 18]])
A multi-dimensional example:
>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A.shape
(2, 3)
>>> B = np.array([[1, 2, 3, 4]])
>>> B.shape
(1, 4)
>>> C = np.multiply.outer(A, B)
>>> C.shape; C
(2, 3, 1, 4)
array([[[[ 1, 2, 3, 4]],
[[ 2, 4, 6, 8]],
[[ 3, 6, 9, 12]]],
[[[ 4, 8, 12, 16]],
[[ 5, 10, 15, 20]],
[[ 6, 12, 18, 24]]]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :