Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « numpy.fft »

Fonction irfft - module numpy.fft

Signature de la fonction irfft

def irfft(a, n=None, axis=-1, norm=None, out=None) 

Description

help(numpy.fft.irfft)

Computes the inverse of `rfft`.

This function computes the inverse of the one-dimensional *n*-point
discrete Fourier Transform of real input computed by `rfft`.
In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical
accuracy. (See Notes below for why ``len(a)`` is necessary here.)

The input is expected to be in the form returned by `rfft`, i.e. the
real zero-frequency term followed by the complex positive frequency terms
in order of increasing frequency.  Since the discrete Fourier Transform of
real input is Hermitian-symmetric, the negative frequency terms are taken
to be the complex conjugates of the corresponding positive frequency terms.

Parameters
----------
a : array_like
    The input array.
n : int, optional
    Length of the transformed axis of the output.
    For `n` output points, ``n//2+1`` input points are necessary.  If the
    input is longer than this, it is cropped.  If it is shorter than this,
    it is padded with zeros.  If `n` is not given, it is taken to be
    ``2*(m-1)`` where ``m`` is the length of the input along the axis
    specified by `axis`.
axis : int, optional
    Axis over which to compute the inverse FFT. If not given, the last
    axis is used.
norm : {"backward", "ortho", "forward"}, optional
    Normalization mode (see `numpy.fft`). Default is "backward".
    Indicates which direction of the forward/backward pair of transforms
    is scaled and with what normalization factor.

    .. versionadded:: 1.20.0

        The "backward", "forward" values were added.

out : ndarray, optional
    If provided, the result will be placed in this array. It should be
    of the appropriate shape and dtype.

    .. versionadded:: 2.0.0

Returns
-------
out : ndarray
    The truncated or zero-padded input, transformed along the axis
    indicated by `axis`, or the last one if `axis` is not specified.
    The length of the transformed axis is `n`, or, if `n` is not given,
    ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
    input. To get an odd number of output points, `n` must be specified.

Raises
------
IndexError
    If `axis` is not a valid axis of `a`.

See Also
--------
numpy.fft : For definition of the DFT and conventions used.
rfft : The one-dimensional FFT of real input, of which `irfft` is inverse.
fft : The one-dimensional FFT.
irfft2 : The inverse of the two-dimensional FFT of real input.
irfftn : The inverse of the *n*-dimensional FFT of real input.

Notes
-----
Returns the real valued `n`-point inverse discrete Fourier transform
of `a`, where `a` contains the non-negative frequency terms of a
Hermitian-symmetric sequence. `n` is the length of the result, not the
input.

If you specify an `n` such that `a` must be zero-padded or truncated, the
extra/removed values will be added/removed at high frequencies. One can
thus resample a series to `m` points via Fourier interpolation by:
``a_resamp = irfft(rfft(a), m)``.

The correct interpretation of the hermitian input depends on the length of
the original data, as given by `n`. This is because each input shape could
correspond to either an odd or even length signal. By default, `irfft`
assumes an even output length which puts the last entry at the Nyquist
frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,
the value is thus treated as purely real. To avoid losing information, the
correct length of the real input **must** be given.

Examples
--------
>>> import numpy as np
>>> np.fft.ifft([1, -1j, -1, 1j])
array([0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j]) # may vary
>>> np.fft.irfft([1, -1j, -1])
array([0.,  1.,  0.,  0.])

Notice how the last term in the input to the ordinary `ifft` is the
complex conjugate of the second term, and the output has zero imaginary
part everywhere.  When calling `irfft`, the negative frequencies are not
specified, and the output array is purely real.



Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé