Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Classe « Axes »
Signature de la méthode ecdf
def ecdf(self, x, weights=None, *, complementary=False, orientation='vertical', compress=False, data=None, **kwargs)
Description
help(Axes.ecdf)
Compute and plot the empirical cumulative distribution function of *x*.
.. versionadded:: 3.8
Parameters
----------
x : 1d array-like
The input data. Infinite entries are kept (and move the relevant
end of the ecdf from 0/1), but NaNs and masked values are errors.
weights : 1d array-like or None, default: None
The weights of the entries; must have the same shape as *x*.
Weights corresponding to NaN data points are dropped, and then the
remaining weights are normalized to sum to 1. If unset, all
entries have the same weight.
complementary : bool, default: False
Whether to plot a cumulative distribution function, which increases
from 0 to 1 (the default), or a complementary cumulative
distribution function, which decreases from 1 to 0.
orientation : {"vertical", "horizontal"}, default: "vertical"
Whether the entries are plotted along the x-axis ("vertical", the
default) or the y-axis ("horizontal"). This parameter takes the
same values as in `~.Axes.hist`.
compress : bool, default: False
Whether multiple entries with the same values are grouped together
(with a summed weight) before plotting. This is mainly useful if
*x* contains many identical data points, to decrease the rendering
complexity of the plot. If *x* contains no duplicate points, this
has no effect and just uses some time and memory.
Other Parameters
----------------
data : indexable object, optional
If given, the following parameters also accept a string ``s``, which is
interpreted as ``data[s]`` if ``s`` is a key in ``data``:
*x*, *weights*
**kwargs
Keyword arguments control the `.Line2D` properties:
Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
animated: bool
antialiased or aa: bool
clip_box: `~matplotlib.transforms.BboxBase` or None
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: :mpltype:`color`
dash_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
dash_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `~matplotlib.figure.Figure` or `~matplotlib.figure.SubFigure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gapcolor: :mpltype:`color` or None
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style string, `~.path.Path` or `~.markers.MarkerStyle`
markeredgecolor or mec: :mpltype:`color`
markeredgewidth or mew: float
markerfacecolor or mfc: :mpltype:`color`
markerfacecoloralt or mfcalt: :mpltype:`color`
markersize or ms: float
markevery: None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
mouseover: bool
path_effects: list of `.AbstractPathEffect`
picker: float or callable[[Artist, Event], tuple[bool, dict]]
pickradius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: `.CapStyle` or {'butt', 'projecting', 'round'}
solid_joinstyle: `.JoinStyle` or {'miter', 'round', 'bevel'}
transform: unknown
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float
Returns
-------
`.Line2D`
Notes
-----
The ecdf plot can be thought of as a cumulative histogram with one bin
per data entry; i.e. it reports on the entire dataset without any
arbitrary binning.
If *x* contains NaNs or masked entries, either remove them first from
the array (if they should not taken into account), or replace them by
-inf or +inf (if they should be sorted at the beginning or the end of
the array).
Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :