__getstate__(self) |
|
__reduce__(self) |
|
__setstate__(self, state) |
|
betavariate(self, alpha, beta) |
Beta distribution. [extrait de betavariate.__doc__] |
choice(self, seq) |
Choose a random element from a non-empty sequence. [extrait de choice.__doc__] |
choices(self, population, weights=None, *, cum_weights=None, k=1) |
Return a k sized list of population elements chosen with replacement. [extrait de choices.__doc__] |
expovariate(self, lambd) |
Exponential distribution. [extrait de expovariate.__doc__] |
gammavariate(self, alpha, beta) |
Gamma distribution. Not the gamma function! [extrait de gammavariate.__doc__] |
gauss(self, mu=0.0, sigma=1.0) |
Gaussian distribution. [extrait de gauss.__doc__] |
getrandbits(self, k) |
getrandbits(k) -> x. Generates an int with k random bits. [extrait de getrandbits.__doc__] |
getstate(self) |
Return internal state; can be passed to setstate() later. [extrait de getstate.__doc__] |
lognormvariate(self, mu, sigma) |
Log normal distribution. [extrait de lognormvariate.__doc__] |
normalvariate(self, mu=0.0, sigma=1.0) |
Normal distribution. [extrait de normalvariate.__doc__] |
paretovariate(self, alpha) |
Pareto distribution. alpha is the shape parameter. [extrait de paretovariate.__doc__] |
randbytes(self, n) |
Generate n random bytes. [extrait de randbytes.__doc__] |
randint(self, a, b) |
Return random integer in range [a, b], including both end points. [extrait de randint.__doc__] |
random(self) |
random() -> x in the interval [0, 1). [extrait de random.__doc__] |
randrange(self, start, stop=None, step=1) |
Choose a random item from range(stop) or range(start, stop[, step]). [extrait de randrange.__doc__] |
sample(self, population, k, *, counts=None) |
Chooses k unique random elements from a population sequence. [extrait de sample.__doc__] |
seed(self, a=None, version=2) |
Initialize internal state from a seed. [extrait de seed.__doc__] |
setstate(self, state) |
Restore internal state from object returned by getstate(). [extrait de setstate.__doc__] |
shuffle(self, x) |
Shuffle list x in place, and return None. [extrait de shuffle.__doc__] |
triangular(self, low=0.0, high=1.0, mode=None) |
Triangular distribution. [extrait de triangular.__doc__] |
uniform(self, a, b) |
Get a random number in the range [a, b) or [a, b] depending on rounding. [extrait de uniform.__doc__] |
vonmisesvariate(self, mu, kappa) |
Circular data distribution. [extrait de vonmisesvariate.__doc__] |
weibullvariate(self, alpha, beta) |
Weibull distribution. [extrait de weibullvariate.__doc__] |
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :