Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.stats.mstats »
Signature de la fonction pearsonr
def pearsonr(x, y)
Description
help(scipy.stats.mstats.pearsonr)
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient [1]_ measures the linear relationship
between two datasets. The calculation of the p-value relies on the
assumption that each dataset is normally distributed. (See Kowalski [3]_
for a discussion of the effects of non-normality of the input on the
distribution of the correlation coefficient.) Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear relationship.
Parameters
----------
x : (N,) array_like
Input array.
y : (N,) array_like
Input array.
Returns
-------
r : float
Pearson's correlation coefficient.
p-value : float
Two-tailed p-value.
Warns
-----
`~scipy.stats.ConstantInputWarning`
Raised if an input is a constant array. The correlation coefficient
is not defined in this case, so ``np.nan`` is returned.
`~scipy.stats.NearConstantInputWarning`
Raised if an input is "nearly" constant. The array ``x`` is considered
nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``.
Numerical errors in the calculation ``x - mean(x)`` in this case might
result in an inaccurate calculation of r.
See Also
--------
spearmanr : Spearman rank-order correlation coefficient.
kendalltau : Kendall's tau, a correlation measure for ordinal data.
Notes
-----
The correlation coefficient is calculated as follows:
.. math::
r = \frac{\sum (x - m_x) (y - m_y)}
{\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}}
where :math:`m_x` is the mean of the vector x and :math:`m_y` is
the mean of the vector y.
Under the assumption that x and y are drawn from
independent normal distributions (so the population correlation coefficient
is 0), the probability density function of the sample correlation
coefficient r is ([1]_, [2]_):
.. math::
f(r) = \frac{{(1-r^2)}^{n/2-2}}{\mathrm{B}(\frac{1}{2},\frac{n}{2}-1)}
where n is the number of samples, and B is the beta function. This
is sometimes referred to as the exact distribution of r. This is
the distribution that is used in `pearsonr` to compute the p-value.
The distribution is a beta distribution on the interval [-1, 1],
with equal shape parameters a = b = n/2 - 1. In terms of SciPy's
implementation of the beta distribution, the distribution of r is::
dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)
The p-value returned by `pearsonr` is a two-sided p-value. The p-value
roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. More precisely, for a
given sample with correlation coefficient r, the p-value is
the probability that abs(r') of a random sample x' and y' drawn from
the population with zero correlation would be greater than or equal
to abs(r). In terms of the object ``dist`` shown above, the p-value
for a given r and length n can be computed as::
p = 2*dist.cdf(-abs(r))
When n is 2, the above continuous distribution is not well-defined.
One can interpret the limit of the beta distribution as the shape
parameters a and b approach a = b = 0 as a discrete distribution with
equal probability masses at r = 1 and r = -1. More directly, one
can observe that, given the data x = [x1, x2] and y = [y1, y2], and
assuming x1 != x2 and y1 != y2, the only possible values for r are 1
and -1. Because abs(r') for any sample x' and y' with length 2 will
be 1, the two-sided p-value for a sample of length 2 is always 1.
References
----------
.. [1] "Pearson correlation coefficient", Wikipedia,
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
.. [2] Student, "Probable error of a correlation coefficient",
Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310.
.. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution
of the Sample Product-Moment Correlation Coefficient"
Journal of the Royal Statistical Society. Series C (Applied
Statistics), Vol. 21, No. 1 (1972), pp. 1-12.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> from scipy.stats import mstats
>>> mstats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
(-0.7426106572325057, 0.1505558088534455)
There is a linear dependence between x and y if y = a + b*x + e, where
a,b are constants and e is a random error term, assumed to be independent
of x. For simplicity, assume that x is standard normal, a=0, b=1 and let
e follow a normal distribution with mean zero and standard deviation s>0.
>>> s = 0.5
>>> x = stats.norm.rvs(size=500)
>>> e = stats.norm.rvs(scale=s, size=500)
>>> y = x + e
>>> mstats.pearsonr(x, y)
(0.9029601878969703, 8.428978827629898e-185) # may vary
This should be close to the exact value given by
>>> 1/np.sqrt(1 + s**2)
0.8944271909999159
For s=0.5, we observe a high level of correlation. In general, a large
variance of the noise reduces the correlation, while the correlation
approaches one as the variance of the error goes to zero.
It is important to keep in mind that no correlation does not imply
independence unless (x, y) is jointly normal. Correlation can even be zero
when there is a very simple dependence structure: if X follows a
standard normal distribution, let y = abs(x). Note that the correlation
between x and y is zero. Indeed, since the expectation of x is zero,
cov(x, y) = E[x*y]. By definition, this equals E[x*abs(x)] which is zero
by symmetry. The following lines of code illustrate this observation:
>>> y = np.abs(x)
>>> mstats.pearsonr(x, y)
(-0.016172891856853524, 0.7182823678751942) # may vary
A non-zero correlation coefficient can be misleading. For example, if X has
a standard normal distribution, define y = x if x < 0 and y = 0 otherwise.
A simple calculation shows that corr(x, y) = sqrt(2/Pi) = 0.797...,
implying a high level of correlation:
>>> y = np.where(x < 0, x, 0)
>>> mstats.pearsonr(x, y)
(0.8537091583771509, 3.183461621422181e-143) # may vary
This is unintuitive since there is no dependence of x and y if x is larger
than zero which happens in about half of the cases if we sample x and y.
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :