Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « pandas »
Signature de la fonction to_datetime
def to_datetime(arg: 'DatetimeScalarOrArrayConvertible | DictConvertible', errors: 'DateTimeErrorChoices' = 'raise', dayfirst: 'bool' = False, yearfirst: 'bool' = False, utc: 'bool' = False, format: 'str | None' = None, exact: 'bool | lib.NoDefault' = <no_default>, unit: 'str | None' = None, infer_datetime_format: 'lib.NoDefault | bool' = <no_default>, origin: 'str' = 'unix', cache: 'bool' = True) -> 'DatetimeIndex | Series | DatetimeScalar | NaTType | None'
Description
help(pandas.to_datetime)
Convert argument to datetime.
This function converts a scalar, array-like, :class:`Series` or
:class:`DataFrame`/dict-like to a pandas datetime object.
Parameters
----------
arg : int, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like
The object to convert to a datetime. If a :class:`DataFrame` is provided, the
method expects minimally the following columns: :const:`"year"`,
:const:`"month"`, :const:`"day"`. The column "year"
must be specified in 4-digit format.
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If :const:`'raise'`, then invalid parsing will raise an exception.
- If :const:`'coerce'`, then invalid parsing will be set as :const:`NaT`.
- If :const:`'ignore'`, then invalid parsing will return the input.
dayfirst : bool, default False
Specify a date parse order if `arg` is str or is list-like.
If :const:`True`, parses dates with the day first, e.g. :const:`"10/11/12"`
is parsed as :const:`2012-11-10`.
.. warning::
``dayfirst=True`` is not strict, but will prefer to parse
with day first.
yearfirst : bool, default False
Specify a date parse order if `arg` is str or is list-like.
- If :const:`True` parses dates with the year first, e.g.
:const:`"10/11/12"` is parsed as :const:`2010-11-12`.
- If both `dayfirst` and `yearfirst` are :const:`True`, `yearfirst` is
preceded (same as :mod:`dateutil`).
.. warning::
``yearfirst=True`` is not strict, but will prefer to parse
with year first.
utc : bool, default False
Control timezone-related parsing, localization and conversion.
- If :const:`True`, the function *always* returns a timezone-aware
UTC-localized :class:`Timestamp`, :class:`Series` or
:class:`DatetimeIndex`. To do this, timezone-naive inputs are
*localized* as UTC, while timezone-aware inputs are *converted* to UTC.
- If :const:`False` (default), inputs will not be coerced to UTC.
Timezone-naive inputs will remain naive, while timezone-aware ones
will keep their time offsets. Limitations exist for mixed
offsets (typically, daylight savings), see :ref:`Examples
<to_datetime_tz_examples>` section for details.
.. warning::
In a future version of pandas, parsing datetimes with mixed time
zones will raise an error unless `utc=True`.
Please specify `utc=True` to opt in to the new behaviour
and silence this warning. To create a `Series` with mixed offsets and
`object` dtype, please use `apply` and `datetime.datetime.strptime`.
See also: pandas general documentation about `timezone conversion and
localization
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
#time-zone-handling>`_.
format : str, default None
The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See
`strftime documentation
<https://docs.python.org/3/library/datetime.html
#strftime-and-strptime-behavior>`_ for more information on choices, though
note that :const:`"%f"` will parse all the way up to nanoseconds.
You can also pass:
- "ISO8601", to parse any `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_
time string (not necessarily in exactly the same format);
- "mixed", to infer the format for each element individually. This is risky,
and you should probably use it along with `dayfirst`.
.. note::
If a :class:`DataFrame` is passed, then `format` has no effect.
exact : bool, default True
Control how `format` is used:
- If :const:`True`, require an exact `format` match.
- If :const:`False`, allow the `format` to match anywhere in the target
string.
Cannot be used alongside ``format='ISO8601'`` or ``format='mixed'``.
unit : str, default 'ns'
The unit of the arg (D,s,ms,us,ns) denote the unit, which is an
integer or float number. This will be based off the origin.
Example, with ``unit='ms'`` and ``origin='unix'``, this would calculate
the number of milliseconds to the unix epoch start.
infer_datetime_format : bool, default False
If :const:`True` and no `format` is given, attempt to infer the format
of the datetime strings based on the first non-NaN element,
and if it can be inferred, switch to a faster method of parsing them.
In some cases this can increase the parsing speed by ~5-10x.
.. deprecated:: 2.0.0
A strict version of this argument is now the default, passing it has
no effect.
origin : scalar, default 'unix'
Define the reference date. The numeric values would be parsed as number
of units (defined by `unit`) since this reference date.
- If :const:`'unix'` (or POSIX) time; origin is set to 1970-01-01.
- If :const:`'julian'`, unit must be :const:`'D'`, and origin is set to
beginning of Julian Calendar. Julian day number :const:`0` is assigned
to the day starting at noon on January 1, 4713 BC.
- If Timestamp convertible (Timestamp, dt.datetime, np.datetimt64 or date
string), origin is set to Timestamp identified by origin.
- If a float or integer, origin is the difference
(in units determined by the ``unit`` argument) relative to 1970-01-01.
cache : bool, default True
If :const:`True`, use a cache of unique, converted dates to apply the
datetime conversion. May produce significant speed-up when parsing
duplicate date strings, especially ones with timezone offsets. The cache
is only used when there are at least 50 values. The presence of
out-of-bounds values will render the cache unusable and may slow down
parsing.
Returns
-------
datetime
If parsing succeeded.
Return type depends on input (types in parenthesis correspond to
fallback in case of unsuccessful timezone or out-of-range timestamp
parsing):
- scalar: :class:`Timestamp` (or :class:`datetime.datetime`)
- array-like: :class:`DatetimeIndex` (or :class:`Series` with
:class:`object` dtype containing :class:`datetime.datetime`)
- Series: :class:`Series` of :class:`datetime64` dtype (or
:class:`Series` of :class:`object` dtype containing
:class:`datetime.datetime`)
- DataFrame: :class:`Series` of :class:`datetime64` dtype (or
:class:`Series` of :class:`object` dtype containing
:class:`datetime.datetime`)
Raises
------
ParserError
When parsing a date from string fails.
ValueError
When another datetime conversion error happens. For example when one
of 'year', 'month', day' columns is missing in a :class:`DataFrame`, or
when a Timezone-aware :class:`datetime.datetime` is found in an array-like
of mixed time offsets, and ``utc=False``.
See Also
--------
DataFrame.astype : Cast argument to a specified dtype.
to_timedelta : Convert argument to timedelta.
convert_dtypes : Convert dtypes.
Notes
-----
Many input types are supported, and lead to different output types:
- **scalars** can be int, float, str, datetime object (from stdlib :mod:`datetime`
module or :mod:`numpy`). They are converted to :class:`Timestamp` when
possible, otherwise they are converted to :class:`datetime.datetime`.
None/NaN/null scalars are converted to :const:`NaT`.
- **array-like** can contain int, float, str, datetime objects. They are
converted to :class:`DatetimeIndex` when possible, otherwise they are
converted to :class:`Index` with :class:`object` dtype, containing
:class:`datetime.datetime`. None/NaN/null entries are converted to
:const:`NaT` in both cases.
- **Series** are converted to :class:`Series` with :class:`datetime64`
dtype when possible, otherwise they are converted to :class:`Series` with
:class:`object` dtype, containing :class:`datetime.datetime`. None/NaN/null
entries are converted to :const:`NaT` in both cases.
- **DataFrame/dict-like** are converted to :class:`Series` with
:class:`datetime64` dtype. For each row a datetime is created from assembling
the various dataframe columns. Column keys can be common abbreviations
like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or
plurals of the same.
The following causes are responsible for :class:`datetime.datetime` objects
being returned (possibly inside an :class:`Index` or a :class:`Series` with
:class:`object` dtype) instead of a proper pandas designated type
(:class:`Timestamp`, :class:`DatetimeIndex` or :class:`Series`
with :class:`datetime64` dtype):
- when any input element is before :const:`Timestamp.min` or after
:const:`Timestamp.max`, see `timestamp limitations
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
#timeseries-timestamp-limits>`_.
- when ``utc=False`` (default) and the input is an array-like or
:class:`Series` containing mixed naive/aware datetime, or aware with mixed
time offsets. Note that this happens in the (quite frequent) situation when
the timezone has a daylight savings policy. In that case you may wish to
use ``utc=True``.
Examples
--------
**Handling various input formats**
Assembling a datetime from multiple columns of a :class:`DataFrame`. The keys
can be common abbreviations like ['year', 'month', 'day', 'minute', 'second',
'ms', 'us', 'ns']) or plurals of the same
>>> df = pd.DataFrame({'year': [2015, 2016],
... 'month': [2, 3],
... 'day': [4, 5]})
>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
Using a unix epoch time
>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')
.. warning:: For float arg, precision rounding might happen. To prevent
unexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
>>> pd.to_datetime([1, 2, 3], unit='D',
... origin=pd.Timestamp('1960-01-01'))
DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'],
dtype='datetime64[ns]', freq=None)
**Differences with strptime behavior**
:const:`"%f"` will parse all the way up to nanoseconds.
>>> pd.to_datetime('2018-10-26 12:00:00.0000000011',
... format='%Y-%m-%d %H:%M:%S.%f')
Timestamp('2018-10-26 12:00:00.000000001')
**Non-convertible date/times**
Passing ``errors='coerce'`` will force an out-of-bounds date to :const:`NaT`,
in addition to forcing non-dates (or non-parseable dates) to :const:`NaT`.
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT
.. _to_datetime_tz_examples:
**Timezones and time offsets**
The default behaviour (``utc=False``) is as follows:
- Timezone-naive inputs are converted to timezone-naive :class:`DatetimeIndex`:
>>> pd.to_datetime(['2018-10-26 12:00:00', '2018-10-26 13:00:15'])
DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'],
dtype='datetime64[ns]', freq=None)
- Timezone-aware inputs *with constant time offset* are converted to
timezone-aware :class:`DatetimeIndex`:
>>> pd.to_datetime(['2018-10-26 12:00 -0500', '2018-10-26 13:00 -0500'])
DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'],
dtype='datetime64[ns, UTC-05:00]', freq=None)
- However, timezone-aware inputs *with mixed time offsets* (for example
issued from a timezone with daylight savings, such as Europe/Paris)
are **not successfully converted** to a :class:`DatetimeIndex`.
Parsing datetimes with mixed time zones will show a warning unless
`utc=True`. If you specify `utc=False` the warning below will be shown
and a simple :class:`Index` containing :class:`datetime.datetime`
objects will be returned:
>>> pd.to_datetime(['2020-10-25 02:00 +0200',
... '2020-10-25 04:00 +0100']) # doctest: +SKIP
FutureWarning: In a future version of pandas, parsing datetimes with mixed
time zones will raise an error unless `utc=True`. Please specify `utc=True`
to opt in to the new behaviour and silence this warning. To create a `Series`
with mixed offsets and `object` dtype, please use `apply` and
`datetime.datetime.strptime`.
Index([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00],
dtype='object')
- A mix of timezone-aware and timezone-naive inputs is also converted to
a simple :class:`Index` containing :class:`datetime.datetime` objects:
>>> from datetime import datetime
>>> pd.to_datetime(["2020-01-01 01:00:00-01:00",
... datetime(2020, 1, 1, 3, 0)]) # doctest: +SKIP
FutureWarning: In a future version of pandas, parsing datetimes with mixed
time zones will raise an error unless `utc=True`. Please specify `utc=True`
to opt in to the new behaviour and silence this warning. To create a `Series`
with mixed offsets and `object` dtype, please use `apply` and
`datetime.datetime.strptime`.
Index([2020-01-01 01:00:00-01:00, 2020-01-01 03:00:00], dtype='object')
|
Setting ``utc=True`` solves most of the above issues:
- Timezone-naive inputs are *localized* as UTC
>>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00'], utc=True)
DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'],
dtype='datetime64[ns, UTC]', freq=None)
- Timezone-aware inputs are *converted* to UTC (the output represents the
exact same datetime, but viewed from the UTC time offset `+00:00`).
>>> pd.to_datetime(['2018-10-26 12:00 -0530', '2018-10-26 12:00 -0500'],
... utc=True)
DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'],
dtype='datetime64[ns, UTC]', freq=None)
- Inputs can contain both string or datetime, the above
rules still apply
>>> pd.to_datetime(['2018-10-26 12:00', datetime(2020, 1, 1, 18)], utc=True)
DatetimeIndex(['2018-10-26 12:00:00+00:00', '2020-01-01 18:00:00+00:00'],
dtype='datetime64[ns, UTC]', freq=None)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :