Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Module « pandas »
Signature de la fonction read_feather
def read_feather(path: 'FilePath | ReadBuffer[bytes]', columns: 'Sequence[Hashable] | None' = None, use_threads: 'bool' = True, storage_options: 'StorageOptions | None' = None, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>) -> 'DataFrame'
Description
help(pandas.read_feather)
Load a feather-format object from the file path.
Parameters
----------
path : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``read()`` function. The string could be a URL.
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be: ``file://localhost/path/to/table.feather``.
columns : sequence, default None
If not provided, all columns are read.
use_threads : bool, default True
Whether to parallelize reading using multiple threads.
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
Back-end data type applied to the resultant :class:`DataFrame`
(still experimental). Behaviour is as follows:
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
(default).
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
DataFrame.
.. versionadded:: 2.0
Returns
-------
type of object stored in file
Examples
--------
>>> df = pd.read_feather("path/to/file.feather") # doctest: +SKIP
Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :