Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « numpy.fft »
Signature de la fonction rfft2
def rfft2(a, s=None, axes=(-2, -1), norm=None, out=None)
Description
help(numpy.fft.rfft2)
Compute the 2-dimensional FFT of a real array.
Parameters
----------
a : array
Input array, taken to be real.
s : sequence of ints, optional
Shape of the FFT.
.. versionchanged:: 2.0
If it is ``-1``, the whole input is used (no padding/trimming).
.. deprecated:: 2.0
If `s` is not ``None``, `axes` must not be ``None`` either.
.. deprecated:: 2.0
`s` must contain only ``int`` s, not ``None`` values. ``None``
values currently mean that the default value for ``n`` is used
in the corresponding 1-D transform, but this behaviour is
deprecated.
axes : sequence of ints, optional
Axes over which to compute the FFT. Default: ``(-2, -1)``.
.. deprecated:: 2.0
If `s` is specified, the corresponding `axes` to be transformed
must not be ``None``.
norm : {"backward", "ortho", "forward"}, optional
Normalization mode (see `numpy.fft`). Default is "backward".
Indicates which direction of the forward/backward pair of transforms
is scaled and with what normalization factor.
.. versionadded:: 1.20.0
The "backward", "forward" values were added.
out : complex ndarray, optional
If provided, the result will be placed in this array. It should be
of the appropriate shape and dtype for the last inverse transform.
incompatible with passing in all but the trivial ``s``).
.. versionadded:: 2.0.0
Returns
-------
out : ndarray
The result of the real 2-D FFT.
See Also
--------
rfftn : Compute the N-dimensional discrete Fourier Transform for real
input.
Notes
-----
This is really just `rfftn` with different default behavior.
For more details see `rfftn`.
Examples
--------
>>> import numpy as np
>>> a = np.mgrid[:5, :5][0]
>>> np.fft.rfft2(a)
array([[ 50. +0.j , 0. +0.j , 0. +0.j ],
[-12.5+17.20477401j, 0. +0.j , 0. +0.j ],
[-12.5 +4.0614962j , 0. +0.j , 0. +0.j ],
[-12.5 -4.0614962j , 0. +0.j , 0. +0.j ],
[-12.5-17.20477401j, 0. +0.j , 0. +0.j ]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :