Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Module « numpy.fft »
Signature de la fonction irfft2
def irfft2(a, s=None, axes=(-2, -1), norm=None, out=None)
Description
help(numpy.fft.irfft2)
Computes the inverse of `rfft2`.
Parameters
----------
a : array_like
The input array
s : sequence of ints, optional
Shape of the real output to the inverse FFT.
.. versionchanged:: 2.0
If it is ``-1``, the whole input is used (no padding/trimming).
.. deprecated:: 2.0
If `s` is not ``None``, `axes` must not be ``None`` either.
.. deprecated:: 2.0
`s` must contain only ``int`` s, not ``None`` values. ``None``
values currently mean that the default value for ``n`` is used
in the corresponding 1-D transform, but this behaviour is
deprecated.
axes : sequence of ints, optional
The axes over which to compute the inverse fft.
Default: ``(-2, -1)``, the last two axes.
.. deprecated:: 2.0
If `s` is specified, the corresponding `axes` to be transformed
must not be ``None``.
norm : {"backward", "ortho", "forward"}, optional
Normalization mode (see `numpy.fft`). Default is "backward".
Indicates which direction of the forward/backward pair of transforms
is scaled and with what normalization factor.
.. versionadded:: 1.20.0
The "backward", "forward" values were added.
out : ndarray, optional
If provided, the result will be placed in this array. It should be
of the appropriate shape and dtype for the last transformation.
.. versionadded:: 2.0.0
Returns
-------
out : ndarray
The result of the inverse real 2-D FFT.
See Also
--------
rfft2 : The forward two-dimensional FFT of real input,
of which `irfft2` is the inverse.
rfft : The one-dimensional FFT for real input.
irfft : The inverse of the one-dimensional FFT of real input.
irfftn : Compute the inverse of the N-dimensional FFT of real input.
Notes
-----
This is really `irfftn` with different defaults.
For more details see `irfftn`.
Examples
--------
>>> import numpy as np
>>> a = np.mgrid[:5, :5][0]
>>> A = np.fft.rfft2(a)
>>> np.fft.irfft2(A, s=a.shape)
array([[0., 0., 0., 0., 0.],
[1., 1., 1., 1., 1.],
[2., 2., 2., 2., 2.],
[3., 3., 3., 3., 3.],
[4., 4., 4., 4., 4.]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :