Classe « cKDTree »
Signature de la méthode query_pairs
Description
query_pairs.__doc__
query_pairs(self, r, p=2., eps=0)
Find all pairs of points in `self` whose distance is at most r.
Parameters
----------
r : positive float
The maximum distance.
p : float, optional
Which Minkowski norm to use. ``p`` has to meet the condition
``1 <= p <= infinity``.
A finite large p may cause a ValueError if overflow can occur.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
output_type : string, optional
Choose the output container, 'set' or 'ndarray'. Default: 'set'
Returns
-------
results : set or ndarray
Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
positions are close. If output_type is 'ndarray', an ndarry is
returned instead of a set.
Examples
--------
You can search all pairs of points in a kd-tree within a distance:
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.spatial import cKDTree
>>> rng = np.random.default_rng()
>>> points = rng.random((20, 2))
>>> plt.figure(figsize=(6, 6))
>>> plt.plot(points[:, 0], points[:, 1], "xk", markersize=14)
>>> kd_tree = cKDTree(points)
>>> pairs = kd_tree.query_pairs(r=0.2)
>>> for (i, j) in pairs:
... plt.plot([points[i, 0], points[j, 0]],
... [points[i, 1], points[j, 1]], "-r")
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :