Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Classe « Generator »
Signature de la méthode standard_t
def standard_t(self, df, size=None)
Description
help(Generator.standard_t)
standard_t(df, size=None)
Draw samples from a standard Student's t distribution with `df` degrees
of freedom.
A special case of the hyperbolic distribution. As `df` gets
large, the result resembles that of the standard normal
distribution (`standard_normal`).
Parameters
----------
df : float or array_like of floats
Degrees of freedom, must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``df`` is a scalar. Otherwise,
``np.array(df).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized standard Student's t distribution.
Notes
-----
The probability density function for the t distribution is
.. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
\Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}
The t test is based on an assumption that the data come from a
Normal distribution. The t test provides a way to test whether
the sample mean (that is the mean calculated from the data) is
a good estimate of the true mean.
The derivation of the t-distribution was first published in
1908 by William Gosset while working for the Guinness Brewery
in Dublin. Due to proprietary issues, he had to publish under
a pseudonym, and so he used the name Student.
References
----------
.. [1] Dalgaard, Peter, "Introductory Statistics With R",
Springer, 2002.
.. [2] Wikipedia, "Student's t-distribution"
https://en.wikipedia.org/wiki/Student's_t-distribution
Examples
--------
From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
women in kilojoules (kJ) is:
>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])
Does their energy intake deviate systematically from the recommended
value of 7725 kJ? Our null hypothesis will be the absence of deviation,
and the alternate hypothesis will be the presence of an effect that could be
either positive or negative, hence making our test 2-tailed.
Because we are estimating the mean and we have N=11 values in our sample,
we have N-1=10 degrees of freedom. We set our significance level to 95% and
compute the t statistic using the empirical mean and empirical standard
deviation of our intake. We use a ddof of 1 to base the computation of our
empirical standard deviation on an unbiased estimate of the variance (note:
the final estimate is not unbiased due to the concave nature of the square
root).
>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727
>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> t
-2.8207540608310198
We draw 1000000 samples from Student's t distribution with the adequate
degrees of freedom.
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> s = rng.standard_t(10, size=1000000)
>>> h = plt.hist(s, bins=100, density=True)
Does our t statistic land in one of the two critical regions found at
both tails of the distribution?
>>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
0.018318 #random < 0.05, statistic is in critical region
The probability value for this 2-tailed test is about 1.83%, which is
lower than the 5% pre-determined significance threshold.
Therefore, the probability of observing values as extreme as our intake
conditionally on the null hypothesis being true is too low, and we reject
the null hypothesis of no deviation.
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :