Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Classe « Generator »
Signature de la méthode multinomial
def multinomial(self, n, pvals, size=None)
Description
help(Generator.multinomial)
multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.
The multinomial distribution is a multivariate generalization of the
binomial distribution. Take an experiment with one of ``p``
possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the
distribution represents `n` such experiments. Its values,
``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
outcome was ``i``.
Parameters
----------
n : int or array-like of ints
Number of experiments.
pvals : array-like of floats
Probabilities of each of the ``p`` different outcomes with shape
``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must
sum to 1 (however, the last element is always assumed to account
for the remaining probability, as long as
``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1
dimension where pvals.shape[-1] > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn each with ``p`` elements. Default
is None where the output size is determined by the broadcast shape
of ``n`` and all by the final dimension of ``pvals``, which is
denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it
must be compatible with the broadcast shape ``b``. Specifically,
size must have ``q`` or more elements and size[-(q-j):] must equal
``bj``.
Returns
-------
out : ndarray
The drawn samples, of shape size, if provided. When size is
provided, the output shape is size + (p,) If not specified,
the shape is determined by the broadcast shape of ``n`` and
``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of
the multinomial, ``p``, so that that output shape is
``(b0, b1, ..., bq, p)``.
Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn
from the distribution.
Examples
--------
Throw a dice 20 times:
>>> rng = np.random.default_rng()
>>> rng.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]]) # random
It landed 4 times on 1, once on 2, etc.
Now, throw the dice 20 times, and 20 times again:
>>> rng.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],
[2, 4, 3, 4, 0, 7]]) # random
For the first run, we threw 3 times 1, 4 times 2, etc. For the second,
we threw 2 times 1, 4 times 2, etc.
Now, do one experiment throwing the dice 10 time, and 10 times again,
and another throwing the dice 20 times, and 20 times again:
>>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
array([[[2, 4, 0, 1, 2, 1],
[1, 3, 0, 3, 1, 2]],
[[1, 4, 4, 4, 4, 3],
[3, 3, 2, 5, 5, 2]]]) # random
The first array shows the outcomes of throwing the dice 10 times, and
the second shows the outcomes from throwing the dice 20 times.
A loaded die is more likely to land on number 6:
>>> rng.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26]) # random
Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die
>>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
array([[2, 1, 4, 3, 0, 0],
[3, 3, 3, 6, 1, 4]], dtype=int64) # random
Generate categorical random variates from two categories where the
first has 3 outcomes and the second has 2.
>>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]])
array([[0, 0, 1],
[0, 1, 0]], dtype=int64) # random
``argmax(axis=-1)`` is then used to return the categories.
>>> pvals = [[.1, .5, .4 ], [.3, .7, .0]]
>>> rvs = rng.multinomial(1, pvals, size=(4,2))
>>> rvs.argmax(axis=-1)
array([[0, 1],
[2, 0],
[2, 1],
[2, 0]], dtype=int64) # random
The same output dimension can be produced using broadcasting.
>>> rvs = rng.multinomial([[1]] * 4, pvals)
>>> rvs.argmax(axis=-1)
array([[0, 1],
[2, 0],
[2, 1],
[2, 0]], dtype=int64) # random
The probability inputs should be normalized. As an implementation
detail, the value of the last entry is ignored and assumed to take
up any leftover probability mass, but this should not be relied on.
A biased coin which has twice as much weight on one side as on the
other should be sampled like so:
>>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62]) # random
not like:
>>> rng.multinomial(100, [1.0, 2.0]) # WRONG
Traceback (most recent call last):
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs
Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :