Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.stats »

Fonction kappa4 - module scipy.stats

Signature de la fonction kappa4

def kappa4(*args, **kwds) 

Description

help(scipy.stats.kappa4)

Kappa 4 parameter distribution.

As an instance of the `rv_continuous` class, `kappa4` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.

Methods
-------
rvs(h, k, loc=0, scale=1, size=1, random_state=None)
    Random variates.
pdf(x, h, k, loc=0, scale=1)
    Probability density function.
logpdf(x, h, k, loc=0, scale=1)
    Log of the probability density function.
cdf(x, h, k, loc=0, scale=1)
    Cumulative distribution function.
logcdf(x, h, k, loc=0, scale=1)
    Log of the cumulative distribution function.
sf(x, h, k, loc=0, scale=1)
    Survival function  (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, h, k, loc=0, scale=1)
    Log of the survival function.
ppf(q, h, k, loc=0, scale=1)
    Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, h, k, loc=0, scale=1)
    Inverse survival function (inverse of ``sf``).
moment(order, h, k, loc=0, scale=1)
    Non-central moment of the specified order.
stats(h, k, loc=0, scale=1, moments='mv')
    Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(h, k, loc=0, scale=1)
    (Differential) entropy of the RV.
fit(data)
    Parameter estimates for generic data.
    See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
    keyword arguments.
expect(func, args=(h, k), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
    Expected value of a function (of one argument) with respect to the distribution.
median(h, k, loc=0, scale=1)
    Median of the distribution.
mean(h, k, loc=0, scale=1)
    Mean of the distribution.
var(h, k, loc=0, scale=1)
    Variance of the distribution.
std(h, k, loc=0, scale=1)
    Standard deviation of the distribution.
interval(confidence, h, k, loc=0, scale=1)
    Confidence interval with equal areas around the median.

Notes
-----
The probability density function for kappa4 is:

.. math::

    f(x, h, k) = (1 - k x)^{1/k - 1} (1 - h (1 - k x)^{1/k})^{1/h-1}

if :math:`h` and :math:`k` are not equal to 0.

If :math:`h` or :math:`k` are zero then the pdf can be simplified:

h = 0 and k != 0::

    kappa4.pdf(x, h, k) = (1.0 - k*x)**(1.0/k - 1.0)*
                          exp(-(1.0 - k*x)**(1.0/k))

h != 0 and k = 0::

    kappa4.pdf(x, h, k) = exp(-x)*(1.0 - h*exp(-x))**(1.0/h - 1.0)

h = 0 and k = 0::

    kappa4.pdf(x, h, k) = exp(-x)*exp(-exp(-x))

kappa4 takes :math:`h` and :math:`k` as shape parameters.

The kappa4 distribution returns other distributions when certain
:math:`h` and :math:`k` values are used.

+------+-------------+----------------+------------------+
| h    | k=0.0       | k=1.0          | -inf<=k<=inf     |
+======+=============+================+==================+
| -1.0 | Logistic    |                | Generalized      |
|      |             |                | Logistic(1)      |
|      |             |                |                  |
|      | logistic(x) |                |                  |
+------+-------------+----------------+------------------+
|  0.0 | Gumbel      | Reverse        | Generalized      |
|      |             | Exponential(2) | Extreme Value    |
|      |             |                |                  |
|      | gumbel_r(x) |                | genextreme(x, k) |
+------+-------------+----------------+------------------+
|  1.0 | Exponential | Uniform        | Generalized      |
|      |             |                | Pareto           |
|      |             |                |                  |
|      | expon(x)    | uniform(x)     | genpareto(x, -k) |
+------+-------------+----------------+------------------+

(1) There are at least five generalized logistic distributions.
    Four are described here:
    https://en.wikipedia.org/wiki/Generalized_logistic_distribution
    The "fifth" one is the one kappa4 should match which currently
    isn't implemented in scipy:
    https://en.wikipedia.org/wiki/Talk:Generalized_logistic_distribution
    https://www.mathwave.com/help/easyfit/html/analyses/distributions/gen_logistic.html
(2) This distribution is currently not in scipy.

References
----------
J.C. Finney, "Optimization of a Skewed Logistic Distribution With Respect
to the Kolmogorov-Smirnov Test", A Dissertation Submitted to the Graduate
Faculty of the Louisiana State University and Agricultural and Mechanical
College, (August, 2004),
https://digitalcommons.lsu.edu/gradschool_dissertations/3672

J.R.M. Hosking, "The four-parameter kappa distribution". IBM J. Res.
Develop. 38 (3), 25 1-258 (1994).

B. Kumphon, A. Kaew-Man, P. Seenoi, "A Rainfall Distribution for the Lampao
Site in the Chi River Basin, Thailand", Journal of Water Resource and
Protection, vol. 4, 866-869, (2012).
:doi:`10.4236/jwarp.2012.410101`

C. Winchester, "On Estimation of the Four-Parameter Kappa Distribution", A
Thesis Submitted to Dalhousie University, Halifax, Nova Scotia, (March
2000).
http://www.nlc-bnc.ca/obj/s4/f2/dsk2/ftp01/MQ57336.pdf

The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``kappa4.pdf(x, h, k, loc, scale)`` is identically
equivalent to ``kappa4.pdf(y, h, k) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.

Examples
--------
>>> import numpy as np
>>> from scipy.stats import kappa4
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

>>> h, k = 0.1, 0
>>> mean, var, skew, kurt = kappa4.stats(h, k, moments='mvsk')

Display the probability density function (``pdf``):

>>> x = np.linspace(kappa4.ppf(0.01, h, k),
...                 kappa4.ppf(0.99, h, k), 100)
>>> ax.plot(x, kappa4.pdf(x, h, k),
...        'r-', lw=5, alpha=0.6, label='kappa4 pdf')

Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.

Freeze the distribution and display the frozen ``pdf``:

>>> rv = kappa4(h, k)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of ``cdf`` and ``ppf``:

>>> vals = kappa4.ppf([0.001, 0.5, 0.999], h, k)
>>> np.allclose([0.001, 0.5, 0.999], kappa4.cdf(vals, h, k))
True

Generate random numbers:

>>> r = kappa4.rvs(h, k, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()




Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé