Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « scipy.linalg »
Signature de la fonction det
def det(a, overwrite_a=False, check_finite=True)
Description
help(scipy.linalg.det)
Compute the determinant of a matrix
The determinant is a scalar that is a function of the associated square
matrix coefficients. The determinant value is zero for singular matrices.
Parameters
----------
a : (..., M, M) array_like
Input array to compute determinants for.
overwrite_a : bool, optional
Allow overwriting data in a (may enhance performance).
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
det : (...) float or complex
Determinant of `a`. For stacked arrays, a scalar is returned for each
(m, m) slice in the last two dimensions of the input. For example, an
input of shape (p, q, m, m) will produce a result of shape (p, q). If
all dimensions are 1 a scalar is returned regardless of ndim.
Notes
-----
The determinant is computed by performing an LU factorization of the
input with LAPACK routine 'getrf', and then calculating the product of
diagonal entries of the U factor.
Even if the input array is single precision (float32 or complex64), the
result will be returned in double precision (float64 or complex128) to
prevent overflows.
Examples
--------
>>> import numpy as np
>>> from scipy import linalg
>>> a = np.array([[1,2,3], [4,5,6], [7,8,9]]) # A singular matrix
>>> linalg.det(a)
0.0
>>> b = np.array([[0,2,3], [4,5,6], [7,8,9]])
>>> linalg.det(b)
3.0
>>> # An array with the shape (3, 2, 2, 2)
>>> c = np.array([[[[1., 2.], [3., 4.]],
... [[5., 6.], [7., 8.]]],
... [[[9., 10.], [11., 12.]],
... [[13., 14.], [15., 16.]]],
... [[[17., 18.], [19., 20.]],
... [[21., 22.], [23., 24.]]]])
>>> linalg.det(c) # The resulting shape is (3, 2)
array([[-2., -2.],
[-2., -2.],
[-2., -2.]])
>>> linalg.det(c[0, 0]) # Confirm the (0, 0) slice, [[1, 2], [3, 4]]
-2.0
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :