Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « numpy.random »
Signature de la fonction negative_binomial
def negative_binomial(n, p, size=None)
Description
help(numpy.random.negative_binomial)
negative_binomial(n, p, size=None)
Draw samples from a negative binomial distribution.
Samples are drawn from a negative binomial distribution with specified
parameters, `n` successes and `p` probability of success where `n`
is > 0 and `p` is in the interval [0, 1].
.. note::
New code should use the
`~numpy.random.Generator.negative_binomial`
method of a `~numpy.random.Generator` instance instead;
please see the :ref:`random-quick-start`.
Parameters
----------
n : float or array_like of floats
Parameter of the distribution, > 0.
p : float or array_like of floats
Parameter of the distribution, >= 0 and <=1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``n`` and ``p`` are both scalars.
Otherwise, ``np.broadcast(n, p).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of failures that
occurred before a total of n successes was reached.
.. warning::
This function returns the C-long dtype, which is 32bit on windows
and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
and 64bit on 64bit platforms.
See Also
--------
random.Generator.negative_binomial: which should be used for new code.
Notes
-----
The probability mass function of the negative binomial distribution is
.. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},
where :math:`n` is the number of successes, :math:`p` is the
probability of success, :math:`N+n` is the number of trials, and
:math:`\Gamma` is the gamma function. When :math:`n` is an integer,
:math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
the more common form of this term in the pmf. The negative
binomial distribution gives the probability of N failures given n
successes, with a success on the last trial.
If one throws a die repeatedly until the third time a "1" appears,
then the probability distribution of the number of non-"1"s that
appear before the third "1" is a negative binomial distribution.
References
----------
.. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
MathWorld--A Wolfram Web Resource.
https://mathworld.wolfram.com/NegativeBinomialDistribution.html
.. [2] Wikipedia, "Negative binomial distribution",
https://en.wikipedia.org/wiki/Negative_binomial_distribution
Examples
--------
Draw samples from the distribution:
A real world example. A company drills wild-cat oil
exploration wells, each with an estimated probability of
success of 0.1. What is the probability of having one success
for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?
>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11): # doctest: +SKIP
... probability = sum(s<i) / 100000.
... print(i, "wells drilled, probability of one success =", probability)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :